
                                                                                                            

                                                                                                             Università  

                                                                                                                   di Verona 

 
SpatialDBgroup@polimi.it 

http://SpatialDBgroup.polimi.it 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

November 2011 
 

 

 



Document title GeoUML Model – Geometric Model and OCL Constraints Templates 

Authors Giuseppe Pelagatti, Alberto Belussi, Mauro Negri 

Version 1.0 

Date 15/11/2011 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 
 

Index 

 
1 INTRODUCTION ............................................................................................................................................ 5 

1.1 OBJECTIVES .................................................................................................................................................... 5 
1.2 BASIC CONCEPTS OF THE GEOUML APPROACH .............................................................................................. 5 
1.3 CONCEPTUAL AND PHYSICAL LEVEL – IMPLEMENTATION MODELS ................................................................. 5 

2 GENERAL FEATURES OF THE MODEL .................................................................................................. 6 

2.1 MODEL COMPONENTS ..................................................................................................................................... 6 
2.2 APPROACH FOR THE MODEL DEFINITION AND RELATIONS WITH OTHER ISO STANDARDS ............................... 6 
2.3 SYNTAX OF THE SPECIFICATION LANGUAGE OF GEOUML .............................................................................. 6 

3 STRUCTURAL ELEMENTS .......................................................................................................................... 7 

4 GEOMETRIC MODEL ................................................................................................................................... 9 

4.1 GENERAL FEATURES OF THE GEOMETRIC TYPES AND OBJECTS ........................................................................ 9 
4.2 GEOMETRIC TYPES ........................................................................................................................................ 11 

4.2.1 GU_Object .......................................................................................................................................... 11 
4.2.2 GU_Object2D e GU_Object3D .......................................................................................................... 13 
4.2.3 GU_PrimitiveObject2D and GU_PrimitiveObject3D ........................................................................ 13 
4.2.4 GU_Point2D and GU_Point3D (Point) ............................................................................................. 13 
4.2.5 GU_CPCurve2D and GU_CPCurve3D ............................................................................................. 14 
4.2.6 GU_CPSimpleCurve2D and GU_CPSimpleCurve3D (Composite Simple Curve)............................. 16 
4.2.7 GU_CPRing2D and GU_CPRing3D (Composite Ring) ..................................................................... 16 
4.2.8 GU_CPSurface2D .............................................................................................................................. 16 
4.2.9 Generic aggregate types GU_Aggregate2D and GU_Aggregate3D .................................................. 18 
4.2.10 GU_CXPoint2D e GU_CXPoint3D (Complex Point).................................................................... 20 
4.2.11 GU_CXCurve2D e GU_CXCurve3D (Complex Curve) ................................................................ 20 
4.2.12 GU_CXRing2D and GU_CXRing3D (Complex Ring) ................................................................... 22 
4.2.13 GU_CNCurve2D and GU_CNCurve3D (Connected Curve) ......................................................... 22 
4.2.14 GU_CXSurface2D (Complex Surface) .......................................................................................... 22 
4.2.15 GU_CPSurfaceB3D/GU_CXSurfaceB3D  (Composite/Complex Surface Boundary 3D) ............. 24 
4.2.16 gUnion (geometric union) and gIntersection (geometric intersection) functions .......................... 25 

4.3 TOPOLOGICAL RELATIONS ............................................................................................................................ 27 

5 GEOMETRY-DEPENDENT ATTRIBUTES .............................................................................................. 30 

5.1 INTRODUCTION ............................................................................................................................................. 30 
5.2 SEGMENTED ATTRIBUTE ............................................................................................................................... 30 
5.3 EVENTS ATTRIBUTE ...................................................................................................................................... 33 
5.4 SUBREGIONS ATTRIBUTE ............................................................................................................................... 34 

6 SPATIAL INTEGRITY CONSTRAINTS .................................................................................................... 37 

6.1 INTRODUCTION ............................................................................................................................................. 37 
6.2 TOPOLOGICAL CONSTRAINTS ........................................................................................................................ 38 

6.2.1 Basic existential topological constraint .............................................................................................. 39 
6.2.2 General rules for constraint formulation ........................................................................................... 40 
6.2.3 Formal definition of the existential constraint using OCL translation rules ...................................... 42 
6.2.4 Variants of the basic existential topological constraint ..................................................................... 44 

6.2.4.1 Existential topological constraint with selections ........................................................................................... 44 
6.2.4.2 Existential topological constraints on the boundary or planar projection ....................................................... 45 
6.2.4.3 Topological constraint linked to an association .............................................................................................. 46 
6.2.4.4 Constraints on segmented or subregions attributes......................................................................................... 47 

6.2.5 Topological Constraint on union ........................................................................................................ 48 
6.2.6 Universal topological constraint ........................................................................................................ 49 
6.2.7 Topological constraints with multiple constraining classes ............................................................... 50 
6.2.8 Disjunction of topological constraints ................................................................................................ 51 

6.3 COMPOSITION CONSTRAINTS (PART_WHOLE CONSTRAINTS) ......................................................................... 52 
6.3.1 Composition constraint ...................................................................................................................... 53 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 4  di  85 

6.3.2 Constraint of belonging ...................................................................................................................... 54 
6.3.3 Partition constraint ............................................................................................................................ 55 
6.3.4 Composition constraints with multiple constraining classes .............................................................. 56 

APPENDIX A – TRANSLATION OF CONSTRAINTS IN OCL ....................................................................... 57 

A.1. INTRODUCTION ............................................................................................................................................... 57 
A.2. EXISTENTIAL TOPOLOGICAL CONSTRAINT ...................................................................................................... 57 

A.2.1 Basic form ........................................................................................................................................... 57 
A.2.2 Variant with selection ......................................................................................................................... 59 
A.2.3 Variant on the boundary or planar projection ................................................................................... 62 
A.2.4 Variant linked to an association ......................................................................................................... 63 

A.3 UNION TOPOLOGICAL CONSTRAINT .................................................................................................................. 64 
A.3.1 Basic form ........................................................................................................................................... 64 
A.3.2 Variant with selection ......................................................................................................................... 64 
A.3.3 Variant with selection and segmented attributes ................................................................................ 65 

A.4. UNIVERSAL TOPOLOGICAL CONSTRAINT ......................................................................................................... 67 
A.4.1 Basic form ........................................................................................................................................... 67 
A.4.2 Variant with selection ......................................................................................................................... 67 
A.4.3 Variant with selection and segmented attributes ................................................................................ 68 

A.5. COMPOSITION CONSTRAINT ............................................................................................................................ 70 
A.5.1 Basic form ........................................................................................................................................... 70 
A.5.2 Variant with selection ......................................................................................................................... 70 
A.5.3 Variant with selection and segmented attributes ................................................................................ 71 
A.5.4 Variant on boundary and planar projection ....................................................................................... 72 
A.5.5 Variant linked to an association ......................................................................................................... 73 

A.6. CONSTRAINT OF BELONGING .......................................................................................................................... 74 
A.6.1 Basic form ........................................................................................................................................... 74 
A.6.2 Variant with selection ......................................................................................................................... 75 
A.6.3 Variant with selection and segmented attributes ................................................................................ 76 
A.6.4 Variant on boundary and planar projection ....................................................................................... 78 

A.7. PARTITION CONSTRAINT ................................................................................................................................. 79 
A.8. COMPOSITION CONSTRAINTS WITH MULTIPLE CONSTRAINING CLASSES .......................................................... 80 

A.8.1 Basic form ........................................................................................................................................... 80 
A.8.2 Variant with selection ......................................................................................................................... 81 
A.8.3 Variant with selection and segmented attributes ................................................................................ 82 
A.8.4 Variant on boundary and planar projection ....................................................................................... 85 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 5  di  85 

1 Introduction 

1.1 Objectives 

This document defines the main components of the GeoUML model and in particular it 

describes in details: (i) the set of geometric types defined for the specification of the spatial 

components of the classes (spatial attributes) and (ii) the set of OCL Templates that have been 

defined for the specification of spatial integrity constraints among the spatial attributes of the 

classes. 

 

The document is organized as follows: in Section 2 the general features of the model are 

presented; Section 3 illustrates the structural elements of the model; in Section 4 the geometric 

model is formally defined, while in Section 5 and 6 the segmented and subregion attributes and 

the OCL templates for the specification of integrity constraints are illustrated. 

 

1.2 Basic concepts of the GeoUML approach 

The GeoUML model has been designed for the definition of the structural part, called 

Conceptual Schema, of a Content Specification regarding geographical data, that usually 

includes also textual descriptions concerning survey details. It was the result of an Italian project 

that aimed to define the Italian National Core as a reference content specification for the 

creation of topographical databases at regional and local (municipality) level. 

A Content Specification is a formal definition of the data that must be contained in a Data 

Product when it is created by a specific organization. The term Data Product refers to the 

definition that is presented in the ISO 19100 standards and indicates an organized and consistent 

collection of geographical information. A Data Product could be for example a set of files or a 

database. Given a Conceptual Schema there might possibly exist several Data Product 

implementing that schema. 

1.3 Conceptual and physical level – Implementation models 

A Conceptual Schema defines the properties that a Data Product must have at conceptual level, 

that is independently from the technology that has been chosen to implement it.  

Given a Conceptual Schema CS we can define a set of rules that allows one to implement in a 

specific technology a Data Product that represents the content, which is described by CS. More 

specifically the application of such rules allows one to produce automatically starting from CS 

the corresponding Physical Schema that defines the physical data structure of the Data Product 

in a specific technology (shapefiles, SQL database, GML, etc…). This set of rules is called 

Implementation Model. 

The main motivation for separating the Conceptual Schema from the Implementation Model is 

the possibility to define different Implementation Models and to use them for generating several 

physical schemas starting from the same Conceptual Schema. 

So the same conceptual description keeps its validity and significance even if a change of 

technology occurs. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 6  di  85 

2 General features of the model 

2.1 Model components 

GeoUML model is composed of a set of Constructs that allow one to define formally the 

conceptual schema of a content specification. Constructs are of two categories: 

1. the Structural Elements: that are the constructs to be used for defining the data 

structures used for the content representation. 

2. the Integrity Constraints: that are applied to the structural elements of a schema for 

defining the properties that must be satisfied by data of any schema consistent Data 

Product. 

 

2.2 Approach for the model definition and relations with other ISO standards 

GeoUML is a specialization of the ISO standards 19103, 19107, 19109 and these standards refer 

to the standards UML V1.3 (Unified Modeling Language) e OCL (Object Constraint Language). 

Therefore, the formalization of GeoUML model is obtained by providing the mapping rules that 

given a GeoUML schema can produce the corresponding UML schema, that is conformant with 

the above cited standards. 

However, for sake of readability and abstraction, we also describe some parts of the model by 

using an independent definition of the constructs, in particular we chose to follow this approach 

for the geometric types, since we need to extend the Simple Feature Model to deal with 3D for 

points and curves and we wanted to avoid the specialization of the Spatial Schema (ISO 19107), 

which is a huge and advanced standards with respect to the current GIS technology. 

 

Regarding the use of OCL notice that: (i) the function oclisKindOf() is renamed to isKindOf() 

and we remind the notation O.f.g, where O is an object and f and g are functions that produce set 

of values, returns a set of values and not a set of sets of values. 

 

2.3 Syntax of the specification language of GeoUML 

The reference syntax of GeoUML has a textual form, since this was a strict requirement of the 

project for which the model is born: the definition of the Italian National Core. However also a 

graphical syntax is admitted, which is an extension (for representing graphically also integrity 

constraints) of the well-known UML class diagram syntax. 

In particular, in order to improve readability of this document, the language keywords are in 

italic and underlined (e.g. class). 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 7  di  85 

3 Structural elements 

The basic structural elements of GeoUML model are the following constructs: 

- class 

- attribute (non geometric) 

- cardinality 

- enumeration 

- hierarchical enumerations 

- association 

- inheritance 

- geometric attribute 

- attribute of geometric attribute 

- primary key 

- topological layer 

 

All basic structural elements have the following properties: 

 Name (compulsory): is the word (or set of words) that identifies the concept in the 

application domain that is represented be the element in the conceptual schema. 

 Code (compulsory but not for constraints): is an alphanumeric code that identifies the 

element in the schema. 

 Alphanumeric code (compulsory only for classes): it is a short form of the name. 

 

All the basic elements of GeoUML are formally defined by given the corresponding mapping 

rule towards the cited ISO standards. In particular, the rules of ISO 19109, “Rules for 

Application Schema” [19109] have been applied. 

 

For example we report hereby the mapping rule for the class construct with some alphanumeric 

attributes, which is straightforward. 

 

Mapping to ISO Application schema 

 

The following table presents the mapping between GeoUML basic alphanumeric types and 

UML-ISO types. 

 

GeoUML basic alphanumeric 

types 

UML-ISO types 

Integer Integer 

Real Double 

String(N) CharacterString 

NumericString(N) CharacterString with a restriction 

only to the set of digits. 

Boolean Boolean 

Time Time 

Date Date 

DateTime DateTime 

 

 

 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 8  di  85 

Mapping rule for Classes with alphanumeric attributes only. 

 

Basic Class Rule 

Given a class C of a GeoUML schema a corresponding class with the stereotype 

FeatureType and with the same name is generated in the UML-ISO schema. For each 

alphanumeric attribute of C a corresponding UML-ISO attribute is generated and its type is 

chosen according to the above mapping table. 

 

Example: 

 

GeoUML schema 

(textual form) 

Mapping to 

UML-ISO schema 

 

classe C (abbreviazione - codice) 

attributi: 

attributi della classe: 

    A1: Integer 

    A2: Real 

    A3: String(N) 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

The complete list of the mapping rules is reported in the SpatialDBGroup documentation 

published at (in Italian): 

http://spatialdbgroup.polimi.it/fileadmin/docs/it/GeoUMLCISISrevisioneMAGGIO2010.pdf 

<<FeatureType>> 

C 

A1: Integer 

A2: Double 

A3: CharacterString 

Context C 

Inv: self.A3.size <= N 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 9  di  85 

4 Geometric model 

4.1 General features of the geometric types and objects 

The geometric model defines a set of types that can be used as domains for the geometric 

attributes of a GeoUML class. 

The geometric types allow one to define two categories of geometric objects: 

- Geometric primitives: atomic geometries (without any subdivisions in parts) which are 

composed of a single connected and homogeneous element of the reference space (e.g. a 

curve) 

- Geometry collections: set of geometric primitives that can be homogeneous in the 

component types (multi-points, multi-curves or multi-surfaces) or heterogeneous (geometry 

collection); in some cases it is required the satisfaction of some spatial integrity constraints 

by collection components. 

GeoUML geometric types are defined as UML classes and are organized in a UML class 

hierarchy shown in Figure 4.1. This approach allows one to describe incrementally the 

properties of the types, starting with the common properties which are illustrated in the root 

class of the hierarchy called GU_Object (which is an abstract class – abstract types cannot be 

used as attribute domain). 

All geometric objects in GeoUML are defined in a precise coordinate reference system. 

According to this feature GeoUML types are classified in two categories: 

- types that describe geometric objects without the third coordinate (Z), called 2D types. The 

type GU_Object2D is the root of the sub-tree in the type hierarchy of Figure 4.1. 

- types that describe geometric objects in the 3D space, called 3D types. The type 

GU_Object3D is the root of the sub-tree in the type hierarchy of Figure 4.1. 

Notice that Figure 4.1 highlights also the associations among aggregate types (geometry 

collection) and component types (geometric primitives). 

This section defines for each type the properties of the admitted geometries by referring to the 

abstract concept of point sets. 

Notice that the specific representation of the geometries at physical level, including the 

interpolation methods, is not considered by the GeoUML geometric model. Indeed, they will be 

specified in the Implementation Model that will be chosen for the Data Product implementing a 

GeoUML schema. For example the type GU_CPCurve at conceptual level defines the properties 

of a curve in the Euclidian space and can be used as domain of an attribute of a GeoUML class, 

but its physical representation in an implementation model based on the Simple Feature Model 

could be a Linestring type, that represents curve geometries as the concatenation of segments 

with linear interpolation. 

In section 4.2 we illustrate in details the geometric types, while in section 4.3 the operators used 

for testing the topological relations among geometric types are separately presented. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 
 

GU_Object3D
<<abstract>>

GU_Object2D
<<abstract>>

GU_Point3D GU_CXPoint3D

*

element

*

GU_CPRing3D GU_CXRing3D

*

element

*

GU_Object
<<abstract>>

GU_CNCurve3D

GU_CNCurve2D

GU_Point2D GU_CXpoint2D

*

element

*

GU_CPCurve2D GU_CXcurve2D

*

element

*

GU_CPRing2D GU_CXRing2D

*

element

*

GU_CPSurface2D GU_CXSurface2D

*

element

*

GU_PrimitiveObject3D
<<abstract>> GU_Aggregate3D

*

element

* GU_PrimitiveObject2D
<<abstract>> GU_Aggregate2D

*

element

*

GU_CPCurve3D GU_CXCurve3D

*

element

*

GU_CPSimpleCurve3D

GU_CPSimpleCurve2D

GU_CPSurfaceB3D GU_CXSurfaceB3D

 
Figure 4.1 UML hierarchy of the classes representing the available geometric types of the GeoUML.



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 
 

The GeoUML geometric model enriches the standard SFM mainly in the following items: 

 

 The extension to the 3D space of the geometries for representing points and curves together 

with the operators that test topological relations (the test is performed in 3D space) 

 The extension to the 3D space of the boundary of the 2D surfaces by introducing the type 

“surface with 3D boundary” 

 The introduction of some specializations of the geometric types for representing curves. 

 

The name adopted for GeoUML geometric types have been chosen in the context of the project 

“Italian National Core”. 

 

In the sequel, for sake of simplicity, when it is necessary to refer to a subset of geometric types 

we use the symbol “*”; for example, C*curve*D  means CPcurve2D or CPcurve3D or 

CXcurve2D or CXcurve3D. 

 

4.2 Geometric types 

In this section we define in details the geometric types of GeoUML by describing the semantics 

of the general properties and specific properties. Moreover, for each type the point set definition 

of the admitted geometries (domain values) is presented. 

4.2.1 GU_Object 

Definition of the domain values 

GU_Object is an abstract type and contains the definition of general properties that are shared 

by all geometric objects of the GeoUML geometric model. 

From a mathematical point of view an object of type GU_Object is a infinite point set (exept for 

the types that represent isolated points) with the following properties: 

1. It is defined in a Euclidean space 
n
 where the n coordinates of a point are assigned on the 

basis of the adopted reference coordinate system. In GeoUML the space 
2
 is defined for 

objects in the 2D space and 
3
 is also defined for objects in the 3D space, where the Z 

coordinate is used for the representation of the height above sea level (altitude); 

2. It is topologically closed, which means that the point set representing the object includes 

also the points the describe the boundary of the set. 

3. It is regular, which means that, given the point set representing the object the union of its 

interior and its boundary is equal to the set itself; this property avoids to represent tricky 

objects like for example polygons with cuttings in their interiors or polygon holes composed 

of a single point, etc... 

 

General Properties. 

 boundary(): GU_Object  

It returns the boundary of the geometric object that is defined by the point set that limits the 

extension of the object, that is by the points that satisfy the following property: given any 

neighborhood of them, it intersects both their interior and exterior. The calculation of the 

boundary is performed by supposing that the embedding space has the same dimension of 

the object (e.g. a 2D space for surfaces and a 1D space for curves); this rule permits to 

obtain correct boundaries with respect to the user expectation (e.g. the boundary of a curve 

will be its endpoints; while by embedding the curve in a 2D space, the whole curve will 

become boundary of itself. As a consequence, the boundary of an object of dimension d will 

always have a dimension that is (d-1). The detailed description of the geometry representing 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 12  di  85 

the object boundary depends on the specific geometric type and thus will be described in the 

subclasses of GU_Object. 

 coordinateDimension(): Integer 

It returns the dimension of the object coordinates, that is the number of the necessary axes 

for specifying the position of each point of the geometric object in a reference coordinate 

system. This value depends in GeoUML only on the geometric type to which the object 

belongs. 

 dimension(): Integer  

It returns the inherent dimension of the point set that is associated to the geometric object; 

for example, a curve has dimension 1, even if it is embedded in a 3D space. It is always 

equal or less that the coordinate dimension of the same object. 

 isCycle(): Boolean  

It returns TRUE if the geometric object is a cycle (this term is often substituted by “is 

closed”, when it cannot be confused with “is topologically closed”). A cyclic geometric 

object has an empty boundary. 

 isSimple(): Boolean 

It returns TRUE is the geometric object is simple, that is if it does not present self 

intersection or self tangent points. 

 spatialReferenceSystem(): Integer  

It returns the international code that identifies the reference coordinate system of the 

geometric object. 

 planar(): GU_Object2D  

It returns a geometric object embedded in the 2D space that describes the point set that is 

obtained by 2D projecting the point set representing the geometric object. The geometric 

type of the returned object depends on the input object type and is specified in the 

subclasses of GU_Object. 

 

Point Set Operations: the point set operations (union, intersection and difference) can be 

defined very easily in GU_Object, however, we prefer to present them after the subclasses since 

the resulting object type can be very complex. For example, the union of two curves is not 

necessarily a curve, but it is in particular cases. 

 

Function PS(). Given a geometric object O, O.PS() returns the point set associated to O; this 

function is introduced in order to simplifying the presentation of the definitions. 

 

Comment 
Notice that many other properties could have been defined in GU_Object. However, we 

introduce only those ones that are strictly necessary for the definition of spatial integrity 

constraints on a GeoUML schema. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 13  di  85 

4.2.2 GU_Object2D e GU_Object3D 

Definition of possible values 

The abstract types GU_Object2D e GU_Object3D have been introduced to clearly distiguish 

types which describe objects represented by point sets in 2D space from those in 3D space. 

 

Specialization of inherited properties 

 coordinateDimension() 

self.isKindOf(GU_Object2D)  self.coordinateDimension()=2 

self.isKindOf(GU_Object3D)  self.coordinateDimension()=3 

4.2.3 GU_PrimitiveObject2D and GU_PrimitiveObject3D 

Definition of possible values 

These abstract types represent a generic geometric primitive in 2D and 3D space, respectively, 

and have been introduced to simplify the definition of generic aggregates. 

4.2.4 GU_Point2D and GU_Point3D (Point) 

Definition of possible values 

A geometric object of the types GU_Point2D and GU_Point3D is a zero-dimensional object 

called a “point” which represents a position in a space of 2D and 3D coordinates, respectively. 

 

Specialization of inherited properties 

 boundary() 

self.boundary() =  

 dimension() 
self.dimension() = 0 

 isCycle() 
 self.isCycle() = true 

 isSimple() 
self.isSimple() = true 

 planar() 

self.isKindOf(GU_Point2D)  self.planar()= self 

self.isKindOf(GU_Point3D)  self.planar() = q, 

where q has the following properties: q.isKindOf(GU_Point2D)=true and q 

is obtained from the original object by eliminating the coordinate Z from the original 

object. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 14  di  85 

4.2.5 GU_CPCurve2D and GU_CPCurve3D  

Definition of possible values 

The types GU_CPCurve2D and GU_CPCurve3D are used to define a one-dimensional object 

which corresponds to the intuitive concept of a continuous elementary curve obtained by 

“moving” a point continuously in space, without bifurcations nor break points of continuity. 

Moreover, no self-intersections on infinite point set are admitted. Examples of correct 

elementary curves are given in Figure 4.2, while Figure 4.3 shows incorrect examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In mathematical terms, given a closed interval of real numbers associated to an object: 

self.Domain  [a, b]  {t a ≤ t ≤ b}, con a<b 

a curve is defined as a point set obtained through a continuous function f  

self.f :[a, b]  
n, 

where n=2 for curves of type GU_CPCurve2D and n=3 for curves of type GU_CPCurve3D. 

 

Figure 4.3 – Examples of geometries not describable as elementary curves. 

a) b) c) 

Figure 4.2 - Examples of elementary curves (GU_CPCurve2D). 

a) b) c) d) 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 15  di  85 

The curve allows for a maximum of one discrete number of values from the domain for which 

the function f returns the same point of the considered space. 

x1,x2,x3,x4 self.Domain  

((x1<x2  x2<x3  x3<x4)  (f([x1,x2]) ≠ f([x3,x4])) 

where f([x,y]) indicates the section of curve obtained by applying f to the interval 

[x,y]. 

 

Specialization of inherited properties 

 boundary() 
The boundary of a curve is determined supposing that the curve is defined in a one-

dimensional space and thus it is composed of the end points, for open curves (Figure 4.2, 

cases (a) and (b)), while the boundary does not exist if the curve is closed (Figure 4.2, cases 

(c) and (d)). 

 (self.f(a) = self.f(b))  self.boundary() =  

 (self.f(a)  self.f(b))  

               self.boundary() = {self.f(a), self.f(b)} 

 dimension()  
 self.dimension = 1 

 isCycle()  
for determining whether the curve is closed (Figure 2.2, cases (c) and (d)). 

 (self.f(a) = self.f(b))  self.isCycle() = true 

 (self.f(a)  self.f(b))  self.isCycle() = false 

 isSimple()  
Indicates true when the curve does not pass twice through the same point (Figure 4.2, case 

(a)) or the point coincides only with the end point of the curve (Figure 4.2, case (c)). Notice 

that a non-simple curve may intersect itself only in a discrete number of points (Figure 4.2, 

cases (b) and (d)), 

self.isSimple() = true  x1,x2 self.Domain(  

    (self.f(x1)=self.f(x2) x1 x2) (x1=a x2=b)) 

 planar() 
Generally, the projection in 2D space of a 3D primitive curve generates a primitive curve o 

the same type as the original curve, although in some cases the projected curve generates an 

object of a different type, such as: a vertical curve made up of vertices in which only the 

coordinate Z changes can generate in the projection a single point on the plane, a ring on the 

XZ plane generates a simple curve on the plane XY, and finally a simple curve with 

segments that overlap or intersect one another  in the projection generates an aggregate of 

curves. 

self.isKindOf(GU_CPCurve2D)  self.planar() = self 

self.isKindOf(GU_CPCurve3D)  self.planar() = q, 

where q has the following properties: q.isKindOf(GU_Object2D)=true and 

q is the object that describes the point set obtained by eliminating the coordinate Z 

from all points of the point set which describe the object self. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 16  di  85 

4.2.6 GU_CPSimpleCurve2D and GU_CPSimpleCurve3D (Composite Simple 

Curve) 

Definition of possible values 

The types GU_CPSimpleCurve2D and GU_CPSimpleCurve3D are used to define a simple and 

open curve (Figure 4.2, case (a)). 

 

Specialization of inherited properties 

 isSimple() 
 self.isSimple() = true 

 

4.2.7 GU_CPRing2D and GU_CPRing3D (Composite Ring) 

Definition of possible values 

The types GU_CPRing2D e GU_CPRing3D are used to define a simple closed curve, 

corresponding to the intuitive concept of ring (Figure 4.2, case (c)). 

 

Specialization of inherited properties 

 boundary() 

 self.boundary() =   

 isCycle() 
 self.isCycle() = true 

 isSimple() 
 self.isSimple() = true 

 

4.2.8 GU_CPSurface2D  

Definition of possible values 

A geometric object defined by this type is an elementary two-dimensional surface defined in 2D 

space. An elementary surface is defined by a set of GU_CPRing2D rings: a ring, called fe, 

represents the external boundary of the surface and a set of zero or more rings, called Fi = 

{fi1, …, fin}, which represent the internal boundaries that delimit any holes in the surface; 

since a ring does not intersect itself, a boundary cannot possess loops which would break the 

connection (defined below) and the surface cannot degenerate to an open curve (this occurs 

when the external boundary is composed of a single segment moving in one direction and in the 

reverse direction). 

CONTINUA…. 

The mathematical definition of elementary surface is based on the property of a ring f of 

dividing the 2D space in two regions (Jordan curve theorem): a closed internal region of a finite 

area indicated by Int(f) and an external region of an infinite area indicated by Ext(f); both 

regions include the ring f. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 17  di  85 

A surface S described by the external ring fe and by the set of internal rings Fi is made up of 

the set of points in 2D space which satisfy the following properties: 

1. The surface S is composed of the points that belongs to the internal region defined by the 

external boundary and to the external regions defined by the internal boundaries, moreover it 

includes the boundaries (both internal and external) for guaranteeing topological surface 

closure: 

S = Int(fe) Ext(fi1) …  Ext(fin), con fik  Fi, k  [1,n]. 

2. All holes must be contained in the internal region defined by the external boundary and 

each internal boundary may only touch the external boundary at one point; a hole which 

touches the external boundary at two points disconnects the surface, or rather the 

convergence of the external boundary with an internal boundary causes the degeneration of 

the surface to a curve: 

 fik Fi (Int(fik)  Int(fe)  

   ((fik.PS()  fe.PS() = )  (|fik.PS()  fe.PS()|=1))). 

3. A hole cannot be contained in another hole or overlap it. Moreover, two holes may only 

touch each other at one point, like in the previous case. 

 fik,fij  Fi, (fik  fij  (Int(fik)  Ext(fij) 

   ((fik.PS()  fij.PS()) = ) (|fik.PS()  fij.PS()|=1)))). 

4. The internal part of the surface S must be connected, such that any two points of the surface 

S (excluding the boundaries) are connected by a curve that does not cross the 

boundaries.sono. Formally, given: 

- C as the set of all elementary curves of type GU_CPCurve2D definable in 2D space 

- IS (internal part of S) = S–(fe.PS() fi1.PS() … fin.PS()) 

  with fik  Fi, k  [1,n] 

you have that: 

pi,pj  IS (pi pj  

      ( c C ((c.PS()  IS)  (c.f(a)=pi)  (c.f(b)=pj))) 

Figures 4.4 e 4.5 show examples of correct and incorrect surfaces, respectively.  

 
 

 
Figure 4.4 – Surface examples (GU_CPSurface2D). Dotted lines represent internal boundaries. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 18  di  85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice that polygons 2, 5, and 6 in Figure 4.5 are describable as aggregates of two surfaces, 

while the others require the removal of a linear segment to be considered supported surfaces. 

 

Specialization of inherited properties  

 boundary() 

returns an aggregate of type GU_CXRing2D, the components of which are rings that 

represent the external and internal boundaries of the surface. 
 self.boundary().element = {fe, fi1,…, fik,…,  fin} 

                con fik  Fi, k  [1,n] 

 dimension() 
 self.dimension( )= 2 

 isCycle() 

a surface cannot be closed in 2D space. 
 self.isCycle() = false 

 isSimple() 

a surface cannot intersect itself in 2D space. 
 self.isSimple() = true 

4.2.9 Generic aggregate types GU_Aggregate2D and GU_Aggregate3D  

Definition of possible values 

Types GU_Aggregate2D and GU_Aggregate3D are used to define an aggregate, in 2D and 3D 

spaces, respectively, made up of a collection of zero or more primitive geometric objects (which 

may be of different types) sharing the same reference system as the aggregate. Aggregates of 

aggregates are not supported. Finally, a generic aggregate does not place constraints on 

component geometries (these may also be overlapped and coincide). 

From a mathematical perspective, an aggregate A is interpreted as the point set obtained from 

the union of point sets of individual component objects: 

A.PS() = g1.PS()  …  gn.PS(),  gi  A.element 

In GeoUML, subtypes of the generic aggregate are defined in oder to restrict component types 

according to dimension: only point in types GU_CXPoint2D and GU_CXPoint3D, only curves 

in types GU_CXCurve2D, GU_CXCurve3D, GU_CXRing2D, GU_CXRing3D, 

GU_CNCurve2D e GU_CNCurve3D and only surfaces in type  GU_CXSurface2D. Finally, in 

1)     2)              3)            4)              5)                    6) 

Figure 4.5 – Examples of geometries not describable as objects of type GU_CPSurface2D. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 19  di  85 

some types, constraints have been placed on topological relations allowed among aggregate 

components. 

 

Specialization of inherited properties 

 boundary()  
 self.boundary() = null 

 dimension() 

the generic aggregate may contain objects of different dimensions, therefore it is not 

possible to associate dimension statically with type, as is the case with its subtypes; as such, 

the dimension of the aggregate is determined by the largest dimension object. 

 self.dimension()= max({g.dimension()|g self.element} 

 Dimension of the coordinates of an object 

 self.isKindOf(GU_Aggregate2D) (self.coordinateDimension()=2 

          g self.element (g.coordinateDimension()=2)) 

 self.isKindOf(GU_Aggregate3D) (self.coordinateDimension()=3 

   g self.element (g.coordinateDimension()=3)) 

 isSimple() 
 self.isSimple() = null 

 isCycle() 
self.isCycle = null 

 planar()  
returns an object of type GU_Aggregate2D 

 self.planar().element = {g.planar()|g self.element} 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 20  di  85 

4.2.10 GU_CXPoint2D e GU_CXPoint3D (Complex Point) 

Definition of possible values 

A geometric object of types GU_CXPoint2D and GU_CXPoint3D is an aggregate of zero or 

more points all belonging to types GU_Point2D and GU_Point3D respectively.  

 

Specialization of inherited properties 

 boundary() 

 self.boundary() =   

 dimension() 
 self.dimension() = 0 

 isCycle() 

 self.isCycle() = true 

 isSimple() 

a point aggregate is simple when all points are geometrically disjointed. 

  self.isSimple() = true  

     gi,gj self.element (gi ≠ gj  (gi.PS()= gj.PS())) 

4.2.11 GU_CXCurve2D e GU_CXCurve3D (Complex Curve) 

Definition of possible values 

An object of types GU_CXCurve2D and GU_CXCurve3D is a one-dimensional object 

consisting of a collection of zero or more curves of types GU_CPCurve2D and 

GU_CPCurve3D, respectively, which must overlap neither partially nor fully (duplication) in 

order to keep the property of aggregate boundary constant. 

This type is used to define complex curves that support bifurcations and break points of 

continuity, generating complex curves that may or may not be connected. 

 

Defining the internal part of a curve c  GU_CPCurve2D (GU_CPCurve3D) as: 
  I(c) = c.PS()-c.boundary().PS() 
 

 ci,cj  self.element (ci cj  

       ((I(ci)  I(cj)= )  (|(I(ci)  I(cj))| < ))) 

 

Specialization of inherited properties 

 boundary()  

the boundary of a complex curve contains points of the curve which belong to the boundary 

of an even number of aggregate component curves (“mod 2 union rule” from standard ISO 

19125). Let P be the set of all points of type GU_Point2D (GU_Point3D) of 2D (3D) space: 

 self.boundary() = {p  P | g self.element.boundary() 

            (g.PS()=p.PS()  g.isOddBoundary(self.element))} 

where: g.isOddBoundary(A) returns true if the point g is the boundary of an uneven 

number of curves of set A. 

The boundary of the curve in Figure 4.6 a) is made up of 4 outer points, even where the 

aggregate is composed of 4 simple curves converging at the point of intersection, while the 

boundary of the curve in Figure 4.5(b) is made up of 3 end points and the internal 

intersection point, even where the internal point is a boundary of a single curve or of three 

curves. Like in the case of Figure 4.5(a), the boundary of the curve in Figure 4.5(c) is made 

up of only the end points of the component curves, while in case (d) the boundary is empty 

since all components are cycle. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 21  di  85 

 

 dimension() 
 self.dimension() = 1 

 isCycle()  

 self.isCycle()= true  g self.element (g.isCycle()) 

 isSimple() 

The aggregate is simple when each component curve is simple and the curves only touch 

one another at the boundary points; this constraint prevents the internal part of two 

component curves from overlapping, and prevents the boundary point of a curve from 

touching the internal part of another component curve. 

 self.isSimple() = true   

   g self.element (g.isSimple()  

   ( gi,gj self.element (gi≠gj  

          ((gi.PS()  gj.PS()) 

            = 

           (gi.boundary().PS()  gj.boundary().PS()))))) 

 

Figure 4.6 shows a simple aggregate (case (c)), non-simple aggregates (cases (a) and (d)) with 

simple components; the aggregate in Figure 4.6(b) is simple where it is made up of 3 curves 

which touch one another at the internal point, while it is not considered simple where it contains 

2 curves with one which touches the internal part of another with its own boundary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comment 

Notice that there is NO biunique correspondence between a curve viewed as a collection of 

primitive geometric objects and the point set by which it is represented in space as the point set 

may correspond to different aggregates of objects; for example, the aggregate in Figure 4.6(b) 

may be composed of 2, 3, or more primitive curves. The boundary definition of the complex 

curve is based on the point set described by the aggregate and is thus invariable in respect to the 

various aggregate objects compositions which correspond to the same point set of the considered 

space. 

 

Figure 4.6 – Examples of curve aggregates (GU_CXurve2D).  

a) b) c) d) 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 22  di  85 

4.2.12 GU_CXRing2D and GU_CXRing3D (Complex Ring)  

Definition of possible values 

Types GU_CXRing2D and GU_CXRing3D are a specialization of types GU_CXCurve2D and 

GU_CXCurve3D respectively. They are used to define a one-dimensional aggregate made up of 

a collection of zero or more rings of types GU_CPRing2D and GU_CPRing3D respectively. 

The restriction on partial or total overlapping of the type GU_CXCurve of the corresponding 

dimension is inherited, though this does not apply any further constraint to the possible 

topological relations between components. 
 

Specialization of inherited properties  

 boundary() 

 self.boundary() =  

 isCycle() 
 self.isCycle() = true 

 

4.2.13 GU_CNCurve2D and GU_CNCurve3D (Connected Curve)  

Definition of possible values 

Types GU_CNCurve2D and GU_CNCurve3D are specializations of types GU_CXCurve2D and 

GU_CXCurve3D respectively, which give the complex curve the property of connection of 

internal parts: any two points of the complex curve are connected by an elementary curve 

contained in the complex curve. 

Let C be the set of all elementary curves (GU_CPCurve2D /GU_CPCurve3D)  

 pi,pj self.PS() (pi pj  

   ( c C (c.PS()  self.PS()  c.f(a)=pi  c.f(b)=pj))) 

 

4.2.14 GU_CXSurface2D (Complex Surface) 

Definition of possible values 

An object of type GU_CXSurface2D is a complex surface comprising a collection of zero or 

more surfaces of type GU_CPSurface2D that are disjoint or may only touch themselves through 

points of the boundary (therefore the complex surface is generally a non-connected objects):  

 

Let I(g) be the internal part and F(g) be the boundary of a surface g  GU_CPSurface2D 

defined as follows: 
     I(g) = g.PS()-g.boundary().PS() e 

  F(g) = g.boundary().PS() 

   

gi,gj  self.element (gi gj  

 ((I(gi) I gj) = )  (F(gi) F(gj)  )  |F(gi) F(gj)|< )) 

 

Notice that adjacency on a section of the boundary is not supported since the two surfaces would 

be representable with a single surface of type GU_CPSurface2D. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 23  di  85 

Specialization of inherited properties  

 boundary() 

it returns an aggregate of type GU_CXRing2D, the components of which are rings that 

represent the external and internal boundaries of all aggregate component surfaces.  
 self.boundary()=self.element.boundary() 

 dimension  
 self.dimension() = 2 

 isCycle 
A planar surface is not closed by definition. 
  self.isCycle() = false 

 isSimple 
The individual surfaces of components are simple by definition and the definition of 

constraints set by the type guarantee the property of simplicity of the aggregate. 
  self.isSimple = true 

 

Figure 4.7 shows complex surfaces made up of two disjoint elementary surfaces (case (a)), 

adjoining at one point (case (b)) and at two points (case (c)). Figure 4.8 shows two surfaces that 

are not representable as complex surfaces, but as elementary surfaces (case (b)) and as a generic 

aggregate (case (a)) in which the linear section is a curve that is distinct from the two surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) 
a) 

Figure 4.8 – Examples of geometries not describable as GU_CXSurface2D 

Figure 4.7 – Examples of complex surfaces (GU_CXSurface2D) composed  

of two elementary surfaces. 

a) b) c) 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 24  di  85 

4.2.15 GU_CPSurfaceB3D/GU_CXSurfaceB3D  

(Composite/Complex Surface Boundary 3D) 

GeoUML models surfaces in 3D space through the concept of a surface with boundary in 3D 

(types GU_CPSurfaceB3D e GU_CXSurfaceB3D). These two types describes the surface 

through two geometric attributes interconnected by a constraint: 

 attribute “B3D” which for both types describes the real boundary of the surface in 3D space; 

this boundary may be composed of multiple rings and is defined using an aggregate of rings 

of type GU_CXRing3D; 

 the “surface” attribute which describes the planar projection of the surface in 2D space using 

a GU_CPSurface2D primitive surface in type GU_CPSurfaceB3D and a GU_CXSurface2D 

surface aggregate in type GU_CXSurfaceB3D. 

 

The constraint joining the two attributes implies that the boundary of the projected surface 

coincides with the planar projection of the 3D boundary. 

 

Specific attributes of type GU_CPSurfaceB3D 

 surface: GU_CPSurface2D 

 B3D: GU_CXRing3D; 

 

Specific attributes of type GU_CXSurfaceB3D 

 surface: GU_CXSurface2D; 

 B3D: GU_CXRing3D; 

 

Constraint on attributes 

self.B3D.planar().PS() = self.surface.boundary().PS() 

 

Specialization of inherited properties 

The properties defined on GU_Object are significant for component geometries of a surface of 

this type, but not for the composed geometry, therefore the functions boundary(), 

coordinateDimenstion(), dimension(), isCycle(), isSimple(), and planar() will assume the null 

value. 

 

Comment and Example 
The constraint on attribute restricts the configuration of rings which describe the B3D curve to 

only those which, when projected, remain rings that satisfy the constraints set by the surface 

attribute. B3D surfaces have many possible applications, being able to display areal objects 

considering them in three-dimensional space as simple rings (i.e. without a precise 

determination of the three-dimensional surface delimited by the ring itself), while at the same 

time defining many additional properties with reference to surfaces, such as the coverage of an 

area, adjacency, containment of other geometric objects, etc., referring to 2D surfaces delimited 

by projections of such rings. 

An example declaration in GeoUML with reference to this geometric type is the following one:  

class Lake (LAK – 0802) 

attributes 

class spatial components 

080201 - extension: GU_CPSurfaceB3D; 

      ... 

Note that the type is a composition of other types, therefore it has no associated properties as a 

whole. In spatial relations and in all expressions of constraints, reference must by made to 

component attributes. This implies that when referring to an attribute of type 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 25  di  85 

GU_C*SurfaceB3D “.surface“ or “.B3D“ must be added, depending on which of the two 

components is considered; with reference to the previous example, you should write as follows:  

“Lake.extension.surface” or “Lake.extension.B3D” 

in order to express relations or constraints that refer to the spatial component of the Lake class. 

 

The following figure shows an object of type GU_CPSurfaceB3D, with its tow components 

highlighted; it also shows the use of the function boundary() with reference to the “surface” 

component of the object. 

 

 

 

 

 

 

 

Final observation: it is stressed that the type “surfaceB3D” is defined at conceptual level; 

therefore there may be Implementation Models which do not require an explicit representation 

of the two components “surface” and “B3D”. 

 

4.2.16 gUnion (geometric union) and gIntersection (geometric intersection) 

functions 

The operation gUnion (to distinguish it from a union between objects) applies to two objects 

belonging to the defined geometric types (or to one of the two components of a surfaceB3D) and 

produces the set of points obtained from the set theory union of point sets from the objects 

involved. This point set is then associated to an object or to an aggregate of objects of one of the 

types defined in the GeoUML geometric model. The same applies to the operation gIntersection, 

that is, it applies to two geometric objects and produces the set of points obtained from the set 

theory intersection of point sets form the involved objects. Like with gUnion, the result is the 

associated to an object of one of the GeoUML geometric types. 

Table 4.1 shows the types that can be involved in the operations and Tables 4.2(a) and 4.2(b) 

show the subtypes of the GU_Object type produced by the gUnion and gIntersection operations, 

respectively. The tables only show the type codes for operands and for the results. Note that the 

objects involved in the operation and the result must belong to the same space (2D or 3D). 

Certain cells in the tables indicate the possibility of generating different types of results, in 

particular the generic aggregate type when the gUnion (or gIntersection) is made between 

objects of a different dimension. 

S.surface 

S.B3D 

S.surface.boundary( ) 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 26  di  85 

Type code Typo 

 Empty set 

P GU_Point*D  

C GU_CPCurve*D, GU_CPSimpleCurve*D, GU_CPRing*D,   

S GU_CPSurface2D 

MP GU_CXPoint*D, 

MC GU_CXCurve*D, GU_CXRing*D, GU_CNCurve*D 

MS GU_CXSurface2D 

A GU_Aggregate*D  

 

Table 4.1. Types of operands in gUnione and gIntersection 

 

gUnion(a,b)  

b 

     a 
 P C S MP MC MS A 

  P C S MP MC MS A 

P //////////// P, MP C, A S, A MP MC, A MS, A A 

C //////////// //////////// C, MC S, A C, A C, MC MS, A A 

S //////////// //////////// //////////// S, MS S,A S, A S, MS A 

MP //////////// //////////// //////////// //////////// MP MC, A MS, A A 

MC //////////// //////////// //////////// //////////// //////////// C, MC MS, A A 

MS //////////// //////////// //////////// //////////// //////////// //////////// S, MS A 

A //////////// //////////// //////////// //////////// //////////// //////////// //////////// A 

(a) 

 

gIntersection(a,b)  

b 

     a 
 P C S MP MC MS A 

         

P ////// P P P P P P P 

C /////////

///////// 

//////

////// 

P, MP, C, 

MC, A 

P, MP, C, 

MC, A 

P, MP P, MP, C, 

MC, A 

P, MP, C, 

MC, A 

P, MP, C, 

MC, A 

S ///////// ////// ///////////////// any P, MP P, MP, C, 

MC, A 

any any 

MP /////////

///////// 

//////

////// 

/////////////////

///////////////// 

///////////////////

/////////////////// 

P, MP P, MP P, MP P, MP 

MC /////////

///////// 

//////

////// 

/////////////////

///////////////// 

///////////////////

/////////////////// 

////////////

//////////// 

P, MP, C, 

MC, A 

P, MP, C, 

MC, A 

P, MP, C, 

MC, A 

MS ///////// ////// ///////////////// /////////////////// //////////// //////////////// any any 

A ///////// ////// ///////////////// /////////////////// //////////// //////////////// ///////////////// any 

(b) 

 

Table 4.2 Types of object produced by gUnion (a) and gIntersection (b). 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 27  di  85 

4.3 Topological relations 

In order to describe the spatial relations between objects, particularly when specifying geometric 

integrity constraints in a GeoUML schema, it is necessary to use a set of topological relations 

for reference. 

GeoUML topological relations are defined using the concepts of internal part, boundary and 

external part of a geometric object; given a geometric object a of type GU_Object the following 

are defined: 

1. internal part of a, denoted as I(a): it is the point set 
a.PS()- a.boundary.PS() 

(it is the set of points o fan object that do not belong to its boundary) 

2. external part of a, denoted as E(a): it is the set of points from the space that do not 

belong to the object itself. 

The fundamental set of topological relations sued in GeoUML, denoted as RELtopo, is made up 

of the relations: Disjoint (DJ), Touches (TC), In (IN), Contains (CT), Equals (EQ) e Overlaps 

(OV). This set possesses the following characteristics: 

 its constituent relations are mutually exclusive, that is, where the relation R is valid 

between two geometric objects, no other relation of that set is valid 

 the set is complete, that is, given two geometric objects in a certain spatial situations, the 

set will always have a relationship that is true in that situation 

 relations apply to objects of the same type or of different types. 

 

Relations of the RELtopo set do not specify the dimension of the result and are applicable to all 

GeoUML geometric objects except the generic aggregate (as it does not have the boundary 

concept defined); in the case of B3D surfaces, these must be applied by specifying one of the 

attributes that make up the type. Where topological relations are applied to aggregate types, 

there do not involve the components of the aggregate individually, but apply to the aggregate 

point set interpreted as the result of the union of points from the components (e.g. the relation 

“Overlaps” is satisfied by an aggregate if at least one component of the aggregate satisfies it). 

Mainwhile, RELtopo set relations are only comparable between objects defined in the same space 

(2D or 3D); comparison between objects defined in different spaces is not supported. 

 

Definition of the set of relations RELtopo 

With a and b as two geometric objects of any type with the exception of types 

GU_Aggregate2D, GU_Aggregate3D, GU_CPSurfaceB3D and 

GU_CXSurfaceB3D: 

DJ:a.Disjoint(b) def (a.PS()  b.PS() = ) 

TC:a.Touches(b) def(I(a)  I(b) = )  (a.PS()  b.PS()  ) 

IN:a.In(b) def (a.PS()  b.PS() = a.PS())  

             (a.PS()  b.PS()  b.PS())  (I(a)  I(b)  ) 

CT:a.Contains(b) def b.in(a) 

EQ:a.Equals(b)  def (a.PS()  b.PS() = a.PS())  

                     (a.PS()  b.PS() = b.PS()) 

OV:a.Overlaps(b) def(I(a)  I(b)  ) 

                      (a.PS()  b.PS()  a.PS()) 

                      (a.PS()  b.PS()  b.PS()) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 28  di  85 

The minimum complete set RELtopo is expanded by the relations Intersects and Cross 

(between curves); they can be defined from the others, but are commonly used, so they are 

added for convenience: 

INT: a.Intersects(b) def  a.Disjoint(b)  

CR: a.Cross(b) def a.Overlaps(b)  (a.PS()   

                  b.PS()).dimension()=0  

 

Comment 
Notice that: 

 The relation DJ impedes common points between objects, while all others require that the 

two objects have common points. 

 Where common points are not internal points of objects, then the relation is TC. This 

definition considers not only cases of clear adjacency, with only points of the boundary 

shared, but also more complex cases in which the boundary points of one object are also 

internal points of another. This implies, for example, that a curve contained in the boundary 

of a surface is a possible case for the relation TC. The relation TC will always be false when 

both objects belong to GU_Point*D. 

 The containment IN (CT) corresponds intuitively to the concept of set theory containment, 

except where an object is contained in the boundary of another, as described in the previous 

point (TC relation) or equal to another (EQ relation). 

 In case of OV relation, the two objects have internal common points (therefore they do not 

satisfy the TC relation), but are not in IN(CT) or EQ relation (thus both objects have a part 

which is outside the part they share in common). The relation OV is therefore false when 

one or both objects are points. 

 The relation CR is a specialization of the relation OV, which applies only to 

GU_C*Curve*D type objects and verifies that the dimension of intersection is zero (i.e. it is 

a finite set of points). 

 the relations OV, DJ, CR, EQ, TC are symmetrical (e.g., a.Touches(b) is the same as 

b.Touches(a)); 

 the relation DJ between two objects is always true where the geometry of at least one of the 

two objects is empty, while the other topological relations are always false in the presence of 

at least one empty geometry. 

 

The relations of the set RELtopo (except Equals and Contains) are illustrated in Figure 4.9, in 

which each column shows the same topological relation applied to different types of objects and 

each row shows the different relations that apply to the same pair of object types. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 29  di  85 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISJOINT TOUCHES IN OVERLAPS 

DISJOINT TOUCHES IN 

DISJOINT TOUCHES IN OVERLAPS 

OVERLAP S 

 

DISJOINT TOUCHES IN 

DISJOINT TOUCHES IN 

DISJOINT 

Figure 4.9 – Example of topological relations on different types of geometric objects. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 30  di  85 

5 Geometry-dependent attributes 

5.1 Introduction 

Geometry-dependent attributes are attributes whose value is a function of the points belonging 

to a geometric attribute of a class object. The geometry-dependent attribute has three variants: 

segmented attributes, subregions attributes, and events. Defined below are the segmented 

attribute and subregions attribute dependent on linear and areal geometry, respectively, and the 

events attribute dependent on both geometries. 

 

Comment and Example 
For example, if we consider the “location” attribute of a street with a “route” linear 

attribute, the value of this attribute not only depends on the street in question but also on 

the point of the route taken into consideration. The points of the route can be grouped 

into zones with a uniform value of the “location”, called segments. 

If we consider the same example but with an areal representation of the street, the points 

with a uniform “location” value constitute subregions. 

 

The following definitions apply to different geometric types; therefore the formation is 

factorised using the following conventions: 

 The asterisk character in a geometric type name indicates all possible values that could 

be in that position (for example GU_Object*D means any object in two or three 

dimension)  

 The indication of a geometric type in a definition means that the same definition applies 

to that type and to any of its specialisations. 

 

5.2 Segmented attribute 

Given a class X containing a linear geometric attribute g, it is possible to define for g a 

segmented attribute A of domain DA which describes a property dependent on the geometry g. 

This definition is based on the keyword segments On inserted in the section attributes of this 

spatial component of the reference spatial component, as shown in the following example. 

 

 class X (abbreviations) 

 .... 

  class spatial components 

   g: GU_C*Curve*D; 

   attributes of this spatial components 

     A [min..max]: DA segments On g; 

   … 

 

The segmented attribute has a unique name among the attributes of the spatial component on 

which it is defined, in addition to the code and optional alphanumeric code. The domain DA of 

the segmented attribute may be a base domain, an enumerated domain, or a hierarchical 

enumerated domain without additional base domain attributes (the DataType domain is 

excluded). 

 

The definition of the meaning of these types of attributes is based on replacing the declaration:  
A [min..max]: DA segments On g; 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 31  di  85 

with the following two functions: 
ValuesOf_A(p: GU_Point*D): Set(DA) 

  SegmentsOf_A(cond: String): Set(GU_CXCurve*D) 

 

These two functions can be assumed implicitly declared and can be used to specify certain 

additional properties of classes, as occurs when specifying integrity constraints; their 

replacement makes it possible to proceed as though the schema in the previous example were 

written as follows: 

 

Reppresentation in basic GeoUML + methods 
  class X (alphanumericCodeX – codX) 

   attributes 

  class spatial components 

    g: GU_C*Curve*D; 

   methods 

   ValuesOf_A(p: GU_Point*D): Set(DA) 

  SegmentsOf_A(cond: String): Set(GU_CXCurve*D) 

 

The function ValuesOf_A(p) returns the value of the segmented attribute A on a specific 

point p of the geometric attribute g. It receives as parameter a point p defined in the same space 

(2D/3D) of the attribute g and, where the point belongs to g, the function returns a value of the 

domain DA where the cardinality is 1..1, or a set of values where the maximum cardinality is * 

(it is not possible to assign values other than 1 and * to maximum cardinality). Finally, in case 

of an absent value (optional attribute, i.e. minimum cardinality = 0) it returns the null value; the 

null value is also returned where the point does not belong to g or when g is null. 

A segment is a geometric object of the type GU_CXCurve*D (a segment cannot contain 

isolated points) of the same dimension as the geometric attribute g and is associated with a 

value v DA; therefore a segment is made up of the union of all points p of g for which 

ValuesOf_A(p)=v. 

From this definition it is deduced that: 

- a segment generally corresponds to a complex and non-connected curve (the segment may 

contain bifurcations due to self-intersections or intersections between components of the 

geometry); 

- in the case of optional attributes, a segment may exist that contains all points in which the 

attribute has the null value; 

- two different segments may overlap, for example, when a portion of the geometry g shares 

two or more attribute values (only where the maximum cardinality is *) or they may 

intersect (in the presence of self-intersections or intersections between components of the 

geometry; 

- the union (gUnion) of all point sets from the segments defined on g corresponds to the 

geometry of g. 

The function SegmentsOf_A returns the null value when the value of the geometric attribute  

g is null. The function SegmentsOf_A(selection condition), given a particular 

selection condition, returns the set of segments that satisfy that condition; the selection clause is 

a propositional formula of the type: [not]( 1 opLogico … i … opLogico n) with 

opLogico {AND,OR} and where i is an atomic formula of the type (A op cost), (A 

= null) or (A = not null) where A is the segmented attribute, op  {=, <>, >, 

, <, } and cost is a value other than null. An empty condition corresponds to the 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 32  di  85 

constant true, and thus all segments defined on the geometry g will be returned, while a 

condition of always false will return the empty set. 

It is also possible to defined the segmented attribute on the boundary of a surface of types 

GU_C*Surface2D e GU_C*SurfaceB3D; in the first case, a segmented attribute would be 

defined on the 2D boundary of the geometric attribute, while for the surface with 3D boundary 

there are two possibilities: 

- the attribute is defined on the curve (type B3D component) which represents the boundary 

of the surface in 3D space and is described as a segmented attribute on the 3D boundary, 

- the attribute is defined on the boundary of the surface (type surface component) obtained by 

the projection of the type’s B3D component in 2D space, and is described as a segmented 

attribute on the 2D boundary of the geometry. 

In these cases, the attribute is syntactically expressed as shown below, while its meaning is 

unchanged; note that the functions ValuesOf_A() and SegmentsOf_A() are defined in 

the template on the specific 2D or 3D boundary of the geometric attribute in question. 

 

Variant on surface boundary 
   class X  

 ... 

   class spatial components 

    g: GU_C*Surface2D or GU_C*SurfaceB3D; 

   attributes of this spatial component 

     A[min..max]: DA segmented On 2D|3D boundary of g; 

 

Comment and Example 
With reference to the above example, the following definition associates with streets a 

segmented attribute on its route representing the street vertical position.  

class Street (STR – 0501) 

attributes 

class spatial components 

050101 - route: GU_CPCurve3D; 

attributes of this spatial component 

050102 - verticalPosition: Enum VP_TYPE segmented On route; 

 

domain VP_TYPE (TVP – 9977) 

                         01 on ground surface 

         ... 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 33  di  85 

N.B.: in an Implementation Model, a segmented attribute may be created both by fabricating 

geometries that from a single segment and associating them with the attribute value, and by 

using a curved abscissa to indicate the portions of the spatial component on which the attribute 

has a certain value. The physical structure of the Data Product will contain adequate information 

on the type of implementation selected. 

The functions used here to define the semantics of the segments, which will also be used in the 

following chapters (such as to express constraints), can generally be implemented on both of 

these implementations; therefore a Data Product has no need to contain the implementation of 

the functions. 

These consideration are also valid for events and sub-region attributes; however, for the latter, 

the only form of implementation is through the fabrication of geometries, not through a curved 

abscissa. 

5.3 Events attribute 

The definition of an events attribute follows similar rules to that of segmented attributes. 

Given a class X containing a linear geometric attribute g or areal geometric attribute (excluding 

the surfaces GU_C*SurfaceB3D), it is possible to define for g an events attribute A of the 

domain DA which describes a property dependent on the geometry g. This definition is based on 

the keyword Events On inserted in the section attributes of this spatial component of the 

reference spatial component, as shown in the following example. 
 

 class X  

   ... 

   class spatial components 

    g: GU_C*Curve*D or GU_C*Surface2D; 

     attributes of this spatial component 

     A[0..max]: DA Events On g; 

    … 

The events attribute has a unique name among the attributes of the spatial component on which 

it is defined, in addition to the code and optional alphanumeric code. The domain DA may be a 

base domain, and enumerated domain, or a hierarchical enumerated domain without additional 

base domain attributes (the DataType domain is excluded). 

An event is a point of the geometry to which a value v DA is associated; not all points of the 

geometry have an associated event (minimum cardinality is always 0) and there may be points 

that are associated with multiple events (maximum cardinality *). 

 

As with segments, the definition of the meaning of these types of attributes is based on replacing 

the previous declaration with a function, like in the following example: 

 

Reppresentation in basic GeoUML + methods 
  class X (alphanumericCodeX – codX) 

   attributes 

   class spatial components 

    codg - g: GU_C*Curve*D or GU_C*Surface2D; 

   methods 

   EventsOf_A(cond: String): Set(GU_CXPoint*D) 

 

The function EventsOf_A(cond), given a particular selection condition, returns the set of 

points that satisfy that condition; the selection clause is a propositional formula of the type 

[not]( 1 opLogico … i … opLogico n) with opLogico {AND,OR} and i is 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 34  di  85 

an atomic formula of the type (A op cost), where A is the events attributes, op  {=, 

<>, >, , <, } and cost is a value other than null. 

An empty condition corresponds to the constant true, thus in this case the function will return all 

points defined on the geometry g on which an event is defined. 

The function EventsOf_A() returns the null value when the value of the geometric attribute 

g is null. 

5.4 Subregions attribute 

Like with the segmented attribute, the subregions attribute associates a value of a domain to 

different subregions of an areal geometric attribute. 

 

Comment and Example 
An example in this case would be a “street” class with an areal geometric attribute 

“extension” and a “vertical position” attribute. 

In this example, we can define a subregions attribute “vertical position” which associates 

the value of the “vertical position” to various points of the extension of the street; a 

“subregion” is a portion of the extension to which a particular attribute value is 

homogeneously associated.  

 

Given a class X containing an areal geometric attribute g, it is possible to define for g a 

subregions attribute A of the domain DA that describes a property dependent on the geometry of 

g. This definition is based on the keyword Subregions On inserted in the section attributes of 

this spatial component of the reference spatial component g, as shown in the following example. 

 

 class X (alphanumericCodeX – codX) 

  ... 

   class spatial components 

      g: GU_C*Surface2D or GU_C*SurfaceB3D; 

    attributes of this spatial component 

    A[min..max]: DA Subregions On g; 

    … 

 

The subregions attribute has a unique name among the attributes of the spatial component on 

which it is defined, in addition to the code and optional alphanumeric code. The domain DA may 

be a basic domain, an enumerated domain, or a hierarchical enumerated domain without 

additional base domain attributes (the DataType domain is excluded) 

The meaning of the subregions attribute is defined using the same substitution rules using two 

methods as done in the case of segmented attributes, as in the following example: 

 

Representation in basic GeoUML + methods 
  class X (alphanumericCodeX – codX) 

   attributes 

   class spatial components 

      codg - g: GU_C*Surface2D or GU_C*SurfaceB3D; 

   methods 

   ValuesOf_A(p: GU_Point2D): Set(DA) 

  SubregionsOf_A(cond: String): Set(GU_CXSurface2D) 

 

The function ValuesOf_A(p) returns the value of the subregions attribute in a given point p 

of the geometric attribute g. It receives as parameter a point p in 2D space and, where the point 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 35  di  85 

belongs to the geometric attribute g, the function returns a value of the domain DA where the 

cardinality is 1..1, or a set of values where the maximum cardinality is * (it is not possible to 

assign values other that 1 and * to maximum cardinality). Finally in the case of an absent value 

(optional attribute, i.e. minimum cardinality = 0) it returns the null value; the null value is also 

returned when the point does not belong to the geometry or when the geometry is null.  

A subregion is a geometric object of the class GU_CXSurface2D (a subregion cannot contain 

isolated points or curves) and is associated with a value v DA, and therefore a subarea is made 

up of the union of all points p of g for which ValuesOf_A(p)=v. 

 

From this definition it is deduced that: 

- a subregion generally corresponds to a complete, unconnected surface; 

- in the case of optional attributes, a subregion may exist that contains all points in which the 

attribute has the null value; 

- two different subregions may overlap, for example, when a portion of the geometry g shares 

two or more attribute values (only where the maximum cardinality is *); 

- the union (gUnion) of all subregions defined on g corresponds to the geometry of g. 

The function SubregionsOf_A() returns the null value when g is null. 

The function SubregionsOf_A(selection condition) given a particular selection 

condition, returns the set of subregions that satisfy that condition; the selection clause is a 

propositional formula of the type [not]( 1 opLogico … i … opLogico n) with 

opLogico {AND,OR} and i is an atomic formula of the type (A op cost), (A = 

null) or (A = not null) where A is the subregion attribute, op  {=, <>, >, , 

<, } and cost is a value other than null. An empty condition corresponds to the constant 

true, and thus all subregions defined on g will be returned, while a condition of always false will 

return the empty set. 

 

Comment and Example 
The following example in GeoUML is exactly the same as that shown above, but is 

developed by interpreting the vertical position as subregions of an areal representation of 

the street. 

 

class Street (STR – 0501) 

attributes 

class spatial components 

050101 - extension: GU_CPSurface2D; 

attributes of this spatial component 

05010101 - VerticalPosition: Enum T_VP Subregions On extension 

 

  domain T_VP (TSED – 9977) … 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 36  di  85 

Subregions and B3D surfaces 

When the spatial component o fan object is of the type GU_*SurfaceB3D, the subregions are 

defined on the “surface” component, thus making them 2D surfaces as shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 5.1 – A B3D surface with 2 subregions. 

 

 

Notice that the representation shown is at the conceptual level and serves to uniquely determine 

the interpretation of objects, but also allows to create different implementation models. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 37  di  85 

6 Spatial integrity constraints 

6.1 Introduction 

Spatial integrity constraints express conditions that must be satisfied by the spatial components 

of the class instances to which they refer. 

 

Constraints are an important aspect of a Data Product’s conformity with a specification; 

therefore their meaning must not be ambiguous. For this reason, a formal definition is given of 

the meaning of constraints based on a set of rules for translation into OCL (Object Constraint 

Language of UML): in situation where the intuitive meaning of a constraint appears 

ambiguous, reference must be made to its definition to determine its correct 

interpretation. 

 

Since the rules for translation into OCL are numerous and difficult to read, in this chapter, 

constraints are illustrated in natural language to facilitate an interpretation of their general 

meaning and expressivity and a clear understanding of the subsequent chapters. 

 

The rules for translation into OCL are set out in this chapter for illustration purposes only for the 

first type of constraint, while all others are described in Annex A. 

 

There are two families of spatial integrity constraints: topological constraints and part-whole 

constraints. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 38  di  85 

6.2 Topological constraints 

Topological constraints use topological relations from the set RELtopo, defined on all 

instanceable geometric objects of GeoUML, providing they have a defined boundary method; 

therefore generic aggregate attributes cannot be involved in the constraints as topological 

relations do not apply to them. 

There are three categories of topological constraints: 

1. existential constraints 

2. union constraints 

3. universal constraints 

 
For each of these categories there are a base version and different variants for describing more 

detailed conditions, supplementing the base version with a combination of the following elements: 

 selection of objects of the classes involved in the constraint 

 application of the functions boundary() and planar() to the spatial components of 

the objects involved in the constraint 

 use of an association between constrained and constraining classes in the formulation of 

the constraint 

 use of segmented, events, and subregions attributes in the constraint 

 

The presentation of topological constraints is as follows: 

 first of all, the existential topological constraint in the base version is illustrated in detail, 

 this is followed by several general rules that apply to the expression of constraints, 

 a definition is then given, with reference to the existential constraint in its base version, of 

the formulation method through translation into OCL which is applied extensively in Annex 

A, 

 the variants of the existential constraint are then defined, 

 this is followed by a definition of the constraint on union, with variants the same as the 

existential constraint, 

 finally, a definition is given of the universal constraint, with variants the same as the 

existential constraint.  



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 39  di  85 

6.2.1 Basic existential topological constraint 

The basic existential topological constraint requires, for each object x of constrained class X the 

existence of at least one object y of constraining class Y, such that a geometric attribute f of y is 

found in a particular topological relation with a geometric attribute g of x. 

 

Example 
Description of the constraint in natural language: 

for each RoadElement (constrained class) there must be a RoadArea (constraining class) 

whose extension (spatial component of the constraining class) contains the route (spatial 

component of the constrained class) of the RoadElement. 

 

Textual definition of the constraint: 

 

constraint RoadElement.route (IN) exists RoadArea.extension 
 

this constraint operates on classes and spatial components which must be  

defined as follows: 
class RoadArea (…) 

attributes 

class spatial components 

… extension: GU_CPSurface2D 

class RoadElement (…) 

attributes 

class spatial components 

… route: GU_CPCurve2D 

 

The constraint is thus characterised by the following aspects: 

 The constrained class and its geometric attribute (RoadElement and extension in the 

example) 

 The constraining class and its geometric attribute (RoadArea and route in the example) 

 The topological relation (IN in the example), 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 40  di  85 

Graphic representation of the constraint: 

The graphic representation of the same example is shown in Diagram 6.1, which substantially 

contains the same elements as the textual definition, but for which a name must be given to the 

individual constraint (in the figure this is VT_RoadElement).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 6.1 – Example of existential topological constraint 

6.2.2 General rules for constraint formulation 

For all constraints that can be formulated in GeoUML, the following general rules apply: 

- Uniqueness of space for the application of relations: the types of all geometries 

involved in a constraint must belong to the same space (2D or 3D) as topological 

relations are not defined among objects belonging to different spaces (in some cases, to 

satisfy this rule we will see the planar() function used, which changes the embedding 

space of a particular geometry; 

- Disjunction of topological relations: the topological relation of a constraint can 

generally be replaced by a disjunction of elementary topological relations, that is, by 

different relations placed in OR between them (e.g. “DJ or TC”, denoted by “DJ|TC”). 

- Inheritance hierarchy: in the presence of inheritance hierarchies, the definition of a 

constraint between two classes implies its implicit application to all subclasses (direct 

and indirect) of the constrained class and that the constraint satisfaction on each 

constrained object involves the objects of the constraining class and those of all its 

subclasses (direct and indirect). Additionally, the definition of the constraint may refer to 

constrained or constraining class properties or to those inherited from the ancestors of 

the constrained or constraining classes; 

- Self-ring: when a constraint involves the same class, both as constrained class and as 

constraining class (self-ring), the set of constraining objects that are taken in account in 

order to satisfy the constraint of a certain object O is made up of all objects of the class 

excluding the object O itself; 

- Surfaces with 3D boundary: when one or both geometric attributes f and g are of the 

type GU_C*SurfaceB3D it is necessary to specify the component considered in the 

constraint, that is, the B3D attribute or the surface attribute; 

- Abbreviations: in order to simplify the formulation of constraints, the alphanumeric 

class code may be used instead of its full name, while the class prefix may be omitted 

from in front of the attribute names where the class is that of the current context; 

RoadElement (…) 

... 

VT_Elemento_Stradale 
type = exists 

<<IN>> 

route 

RoadArea (…) 

extension 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 41  di  85 

- Limit on the use of attributes: constraints may not refer to attributes of an association 

or to additional base attributes present in the hierarchical enumerated domain of an 

attribute. 

 

Additionally, the rules for the graphic representation of a basic existential constraint apply to all 

constraints and all variants: 

1. the constraint is represented by an arrow pointing from the constrained class to the 

constraining class 

2. on both the constrained and the constraining class, the points where the arrow leaves or 

arrives show the spatial components to which the constraint refers (also applicable to this 

point are the selections and the functions used by the variants described below) 

3. the arrow is documented by a rectangle which contains the topological relation (IN in the 

example), the name of the constraint (VT_RoadElement in the example), and the general 

constraint type (type=exists in the example). 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 42  di  85 

6.2.3 Formal definition of the existential constraint using OCL translation rules 

The formal definition of all constraints in Annex A is made up of the following parts:  

1. Constraint name 

2. Definition of symbols 
3. Constraint syntax in GeoUML, including certain fixed keywords typical of that type of 

constraint (constraint and exists in the basic existential constraint) and certain variable parts, 

defining the classes and spatial components to which the constraint refers and which 

topological relations it applies. 

4. Corresponding OCL template: a template is a function that has a name (in this case 

ExistentialTopoConstraint) and certain parameters (in this case X, g, Y, f and 

DJ_R). Such parameters correspond to the variable parts of the formulation of the constraint 

in GeoUML syntax and also appear in the OCL expression below.  

When the constraint is used in a GeoUML schema, these parameters are replaced with the 

name of the corresponding constructs of the schema on which the constraint is to act. 

Formulation of the constraint in OCL makes use of the check operation defined on the 

GU_Object, for verifying the satisfaction of a disjunction of topological relations 

r1,…,rn instead of a single topological relation; check, applied to an object a with 

reference to an object b, is formally defined as follows: 

   a.check({r1,…,rn}, b) def a.r1(b)  …  a.rn(b) 

 

In the case of a basic existential constraint, the formalisation takes the following form: 

 

Definition of symbols – Given two classes X and Y each containing at least one geometric 

attribute, respectively g and f, the topological existential constraint form X to Y based on the 

disjunction of relations  DJ_R = {rel1,...,reln} is defined as follows: 

Syntax: 
 constraint X.g (rel1 | … | reln) exists Y.f 

 

OCL template: 
ExistentialTopoConstraint (X, g, Y, f, DJ_R) ≡ 

context X 

inv: Y.allInstances -> 

               exists (a:Y | self.g.check(DJ_R, a.f)) 
 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 43  di  85 

Example application of the formal rule to the translation of a specific constraint 

Applying this rule to the constraint from the previous example:  

constraint RoadElement.route (IN) exists RoadArea.extension 

 

we can see that we need to replace the list of parameters (X, g, Y, f, DJ_R) with the 

following (RoadElement, route, RoadArea, extension, IN) and we obtain the 

following constraint in OCL: 

 

context RoadElement 

inv: RoadArea.allInstances -> 

  exists(a: RoadArea |  

         self.route.check(IN, a.extension)) 

 

The constraint in this form could be inserted into an ISO standard Application Schema, provided 

that the check function is defined on the generic geometry. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 44  di  85 

6.2.4 Variants of the basic existential topological constraint 

The variants of the existential topological constraint defined below can also be applied in 

combination. 

6.2.4.1 Existential topological constraint with selections 

This variant is used to select objects from the classes involved in the constraint. 

 

Comment and Example 
A selection on the constrained class limits the objects that must satisfy the constraint to those 

that satisfy the selection, rendering the constraint weaker; a selection on the constraining class 

reduces the number of objects that can be used to satisfy the constraint, rendering it stronger. 

In the following example, the constraint form the previous example is restricted, requiring that 

only the RoadElement of a certain type must satisfy the constraint of being contained in a 

RoadArea object (the definition of the RoadElement class must also contain the type attribute): 

 

constraint (RoadElement.tipo=”T1”)RoadElement.route 

(IN) exists RoadArea.extension 

 

Interpretation of the null value in the evaluation of constraints 
GeoUML supports the optionality of the values of attributes/roles of a class and indicates the 

absence of value with the concept null. 

The definition of constraints implies the possible selection of objects and/or segments (events, 

subregions) and the possible application of the boundary function, which can produce an empty 

set of objects and/or geometries. 

The semantics of constraints in regard to this problem is governed by the following rules: 

 any function (for example , boundary()) applied to a null value produces a null value as 

well; 

 the interpretation of selection applied to classes (segments, etc.) in a constraint refer to 

the standard semantic SLQ92, including for null value interpretation; it should be noted 

that the presence of a null value when evaluating a condition may generate an 

“unknown” result (neither true nor false); in such cases, SQL forces a false evaluation 

and does not select the object. The same condition is verified in the selection of 

segments (events, subregions, etc.); 

 geometries (of both the constrained and constraining classes) are used in the evaluation 

of a constraint only where they contain a non-null value; a constraint therefore 

establishes a condition that must be satisfied only by geometries that are actually 

available (even if empty) when evaluating the constraint. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 45  di  85 

6.2.4.2 Existential topological constraints on the boundary or planar projection 

This variant is used for applying the functions BND (boundary()) and/or PLN (planar()) 

to spatial components involved in the constraint. These functions can also be applied in cascade. 

 

Example 
Consider the example from the previous paragraph with the following variation: assuming that 

the spatial component route of the class RoadElement has a geometry in 3D; in this case, the 

planar() function must be applied to the constraint to satisfy the general rule that topological 

relations are applied to geometries embedded in the same space: 

 

constraint (RoadElement.type=”T1”)RoadElement.route.PLN 

(IN) exists RoadArea.extension 

 

The graphic representation of the example is shown in Diagram 6.2. Notice that in the 

application of general rules of graphic representation, the selection, and the function PLN are 

indicated in the box dedicated to the spatial component. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 6.2- Example of existential topological constraint on projection 

 

RoadElement 

RoadArea 

V1 
type = exist 

<<IN>> 

route.PLN 
type =T1 

extension 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 46  di  85 

6.2.4.3 Topological constraint linked to an association 

With this variation, for purposes of satisfying the constraint, only the objects of the constraining 

class that are bound to the object of the constrained class by an association specified in the 

schema. 

 

Example 
The textual form of this variant is illustrated in the following example, which uses an 

association and the planar() function to show how different constraint variants can be 

combined. 

 

constraint Road.route.PLN (IN) existx Road.municipalityOfRelevance.extension 

 
this constraint operates on classes and spatial components which must be defined as follows: 

class Road (STR – 0501) 

attributes 

class spatial components 

   route: GU_CPCurve3D 

roles 

municipalityOfRilevance [1..1] : Municipality 

 

class Municipality (COM - 0101) 

attributes 

class spatial components 

   extension: GU_CPSurface2D 

 

The graphic form extends the general rules of representation, as it makes the representation of 

the constraint coincide with that of the association used, as follows: 

 

 

 

Municipality  ( COM ) 

 

extension 

<< SpatialAssociation >> 
IN 

Road (STR)  

route.PLN . 

type = exists  

0..* 

1 

roadsInMunicipality 

municipalityOfRelevance 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 47  di  85 

6.2.4.4 Constraints on segmented or subregions attributes 

A constraint can also refer to the geometry of attributes such as segmented, segmented on 

boundary, events or subregions attributes; in this case, the geometric attribute in the constraint 

specification must be replaced with the call of one of the functions to obtain the segments, 

events, or subregions according to the attribute type (for example, the function 

SegmentsOf_A() and SubregionsOf_A(), where A is the name of the segmented or 

subregions attribute); these functions may also include a selection of the segments or subregions 

that are involved in the constraint. 

The following makes reference to the segmented attributes, but any constraint can be 

reformulated in a similar way for the segmented on boundary, events and subregions attributes. 

 

Syntax: 

Let X and Y be two classes and a and b two segmented attributes belonging to X and Y, 

respectively; the usage of the segmented attributes can be established on both classes, or on 

either the constrained class or the constraining class individually, as follows: 

a. constraint X.SegmentsOf_a() (rel1|…|reln) exists Y.SegmentsOf_b() 

this formulation requires that, for each segment of attribute a of class X, there exists a 

segment of the attribute b of class Y, satisfying the specified relations disjunction 

rel1|…|reln between the two. 

b. constraint X.SegmentsOf_a() (rel1 | … | reln) exists Y.f 

this formulation requires that, for each segment of attribute a of class X, there exists an 

instance of class Y with a spatial attribute f, satisfying the specified relations disjunction 

rel1|…|reln between the two. 

c. constraint X.g (rel1 | … | reln) exists Y.SegmentsOf_b() 

this formulation requires that, for the spatial component g of each instance of class X, 

there exists a segment of attribute b of class Y, satisfying the specified relations 

disjunction rel1|…|reln between the two. 

 

The graphic syntax of these variants is taken from the graphic syntax of the base constraint 

replacing the spatial component with the function SegmentsOf_a(), where a is the segmented 

attribute involved in the constraint, in the rectangles relative to the spatial component. 

 

Example 
The following constraint follows the structure from the above case (c), but using subregions 

instead of segments, applying a selection on the constrained class and a selection on the 

subregions attribute of the constraining class. 

constraint (use = "road") Tunnel.Sup_verticalPosition.surface (CT) exists 

RoadArea.SubregionsOf_verticalPosition(verticalPosition = "in tunnel") 

Breakdown: 

1. consider an instance T of the class Tunnel such that its use attribute = “road” (selection 

on constrained class) 

2. consider its spatial component Sup_verticalPosition, which is surface with 3D boundary, 

taking the surface component of that value, which is on the 2D plane, and call that 

surface TS 

3. there must exist a subregion SA of the subregions attribute verticalPosition of an instance 

of the class RoadArea with the value “in tunnel” such that GS contains SA 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 48  di  85 

6.2.5 Topological Constraint on union 

The topological constraint on union refers to the union (gUnion) of the spatial components of all 

instances of the constraining class Y, rather than requiring the existence of an individual instance 

that satisfies the constraint. 

In other words, the topological relation is verified with respect to the geometry obtained from 

the union of values from the spatial components of all instances of Y. 

For topological constraint on union, there are also variants presented for the existential 

topological constraint, that is: version with selection, version referring to boundary() and 

planar(), version referring to an association and version referring to segments, events and 

subregions attributes. 

 

Comment and Example 
An example of the constraint in text form is as follows: 

constraint RoadElement.route (IN) union RoadArea.extension 

 
this constraint operates on classes and spatial components which must be defined as follows 

class RoadArea (…) 

attributes 

class spatial components  

- extension: GU_CPSurface2D 

 

class RoadElement (…)  

attributes 

class spatial components 

- route: GU_CPCurve2D 

 

This constraint requires, for each RoadElement, that the union of “extension” spatial component 

of all instances of the class RoadArea contains its route: the constraint is thus far weaker than 

the existential version discussed above. 

The graphic representation of the constraint is the same as the existential constraint but 

replacing the wording “type=exists” with “type=union”. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 49  di  85 

6.2.6 Universal topological constraint 

The universal topological constraint requires the presence of the topological relation between 

the constrained object and all instances of the constraining class. The universal topological 

constraint may also refer to the individual components of a surface with a 3D profile. There are 

also variants presented for the existential topological constraint, that is: version with selection, 

version with boundary() and planar() functions, version with segmented, events and subregions 

attributes, and the version referring to an association. 

 

Comment and Example 
The universal topological constraint is used almost exclusively with the spatial relation Disjoint, 

possible in disjuction with the spatial relation Touch. This occurs in the following example, 

which also illustrate the possibility – for all types of constraints – that the constrained class and 

constraining class coincide. 

constraint RoadElement.route (DJ | TC)  

                                           forEach RoadElement.route 

 
this constraint operates on classes and spatial components which must be defined as follows: 

class RoadElement (ELESTR – 0504) 

attributes 

... 

class spatial components 

.. .- route: GU_CPCurve3D 

 

The graphic representation of the constraint is the same as the existential constraint but 

replacing the wording “type=exists” with “type=forEach”. 

 

This example recalls the general rule on self-rings in constraints: when the constrained class 

coincides with the constraining class in the evaluation of an instance O of the constrained class, 

reference must be made to the instances of the same class, considered as constraining, but 

excluding the instance O, since the only satisfied spatial relation of a geometry with itself is 

Equals. In the previous example, this means that the route of an instance of RoadElement must 

be in a DJ|TC relation with the route of all other instances of the same class (but obviously not 

with itself). 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 50  di  85 

6.2.7 Topological constraints with multiple constraining classes 

All topological constrains can refer to multiple constraining classes, but it is important to ensure 

a careful interpretation of their meaning. 

The syntax of the base form in this case is as follows: 

 

Syntax: 
 constraint X.g… (rel1 |…| reln) <type> (Y1.f1…, …, Yn.fn…) 

where <type> may be: 

     exists or forEach or unione 

 

The variants (selection, function boundary() and planar() and, reference to segmented, events 

and subregions attributes) may be applied separately to individual constraining classes. 

 

In regards to the meaning, it is indispensable to consider the different behaviour of the 

quantifiers: 

1. In the existential case (exists), an instance must exists in one of the constraining 

classes, for which the constraint is satisfied. Only one instance is necessary, thus the 

constraint might be not satisfied by any instances of one constraining class provided 

that there exists an instance in another constraining class that satisfies the constraint. 

2. In the universal case (forEach) the constraint must be satisfied by all selected 

instances from all constraining classes. 

3. In the case of constraint on union (union), the constraint must be satisfied by the 

geometric union of the specified geometric attribute of all instances from the 

constraining classes; in this case, the union of the geometries of the constraining 

classes is computed before the constraint is verified. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 51  di  85 

6.2.8 Disjunction of topological constraints 

The disjunction of topological constraints allows us to indicate that, for each element of a 

constrained class, at least one of the constraints in the disjunction must be satisfied. In textual 

syntax, the constraints is disjunction are separated by the keyword OR and are preceded by the 

keyword disjunction. 

 

Comment and Example 
It must be ensured that all constraint from the same disjunction refer to the same constrained 

class. An example of disjunction of topological constraints in textual form is shown below. It 

requires that a RoadElement be disjoint from any other RoadElement or that its boundary belong 

to the set of Junctions: 

 

disjunction RoadElement.route (DJ) forEach RoadElement.route 

OR 

RoadElement.route.BND (IN) unione Junction.position 

 

From a graphic perspective, a disjunction of topological constraints is represented by conjoining 

the constraints in disjunction with a line, as shown in Diagram 6.6. 

 

 

Diagram 6.6 – Example of disjunction of topological constraints 

 

 

Junction 
position: GU_Point3D 

V1 
type = forEach 

<<DJ>> 

V2 
type = union 

<<IN>> 

position 

RoadElement 
PK code[1..1] : Integer 
route : GU_CPCurve3D 
... 

route route 

route.BND 

OR 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 52  di  85 

6.3 Composition constraints (part_whole constraints) 

This category of constraints consists of a fundamental constraint, the composition constraint 

(composedOf) and a derivative, the partition constraint. 

The partition constraint derives as it is expressible using the composition constraint and some 

slightly modified topological constraints. Given that the combination of modified topological 

constraints serves a specific function itself, an ad hoc constraint is defined, called as belonging, 

to express the combination. 

 

Composition constraints are broken down as follows: 

1. composition constraint, which is fundamentally non-derivable from topological 

constraints 

2. constraints of belonging with disjunction (dj_IN e qdj_IN),  

3. partition constraint, expressible through a composition constraint and a constraint of 

belonging with disjunction. 

 

I should be noted that composition constraints can be involved in an expression of disjunction of 

constraints. 

 

Moreover, some of the variants already introduced for topological constraints can also be used 

for composition constraints, with the possibility to add selections and refer the constraint to the 

boundary or to the planar projection of the geometric value. Finally, the constraint can also be 

referred to the geometry of attributes such as segmented or subregions attributes and link them 

to association. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 53  di  85 

6.3.1 Composition constraint 

The composition constraint defines a constraint between a geometric attribute f of a class Y and 

the geometric attribute g of a class X. This constraint establishes that for each object y of Y, the 

attribute f is equal to the union of geometric attributes g of one or more objects x of X; where the 

constraint is linked to an association, the constraint is more stringent, requiring that for each 

object y of Y, the attribute f be equal to the union of geometric attributes g of all objects of X 

linked to y in the association. It should be noted that in all cases, the objects x of X which help 

satisfy the constraint in relation to an abject y of Y have a geometry in y.g that is contained in (or 

equal to) the geometry of y.f. 

The composition constraint is of an existential nature: indeed, it requires that, given the 

geometric attribute f of an object of the constrained class (composed class), there exists in the 

constraining class (component class) a number of instances with spatial components, that in 

geometric union, are equal to f. 

 

Syntax: 

 constraint Y.f composedOf X.g 
 

The graphic representation of the constraint is the same as the existential constraint but using the 

wording “composedOf” in place of the spatial relation and the constraint type indication. 

The composition constraint requires that the geometries of the constrained and constraining 

classes must all be of the same dimension (for example, only curves or only surfaces) as it is not 

possible to compose an object of a dimension different from that of the components (for 

example, a surface cannot be obtained through the composition of curves). 

 

Example 
The following two examples refer to the constrained class Road and use the composition 

constraint on both the areal spatial component (relevance) and the linear spatial component 

(analyticalRoute): 

1. Road.relevance.surface composedOf RoadArea.extension.surface 

- this constraint requires the existence of a certain number of road areas 

(RoadArea class) that make up the relevance of a road; 

- the constraint indirectly requires that the extension of RoadArea be cut where 

a road ends; 

- notice that the need to refer to the surface attribute since both relevance and 

extension are surfaces with a 3D boundary. 

2. Road.analyticalRoute composedOf RoadElement.route 

- This constraint requires the existence of a certain number of road elements 

(RoadElements) that make up the analyticalRoute of a road. 

- the constraint indirectly requires that the route of RoadElements be cut where 

the route of a road ends. 

 
this constraint operates on classes and spatial components which must be defined as follows: 

class Road (...) 

attributes 

class spatial components 

... - relevance: GU_CPSurfaceB3D 

... - analyticalRoute: GU_CPCurve3D 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 54  di  85 

class RoadArea (…) 

attributes 

class spatial components 

... - extension: GU_CPSurfaceB3D 

class RoadElement (...) 

attributes 

class spatial components 

... - route: GU_CPCurve3D 

6.3.2 Constraint of belonging 

The constraint of belonging (geometric containment) of the spatial component g of an instance 

of the constrained class X to the spatial component f of an instance of the constraining class Y is 

obtained simply by using an existential topological constraint which requires the topological 

relation IN between g and f. 

It would therefore not be necessary to define any specific constraint to express this property. 

However, it is often beneficial to indicate which topological relations are supported between the 

instances of the constrained class which belong to the same instance of the constraining class. 

 

In order to satisfy this requirement, the following two constraints are introduced, which combine 

belonging (IN) with the disjunction of elements of belonging: 

 constraint of belonging with disjunction (dj-IN): this constraint requires that the 

spatial component of each instance of the constrained class (included geometry) be 

geometrically contained within (topological constraint IN) the spatial component of an 

instance of the constraining class (including geometry) and that there exists, among 

the included geometries contained in the same including geometry, the relation 

Disjoint or Touches restricted to the case where only the boundary-boundary 

intersection exists (note: the Touches relation also admits the boundary-interior 

intersection); 

 constraint of belonging with quasi-disjunction (qdj-IN): this constraint only applies 

for geometric objects of type GU_C*Curve*D (including specialisations) and allows 

for the existence between instances of the constrained class, in addition to Disjoint and 

Touches relations, of the Cross relation. 

 

The graphic representation is obtained from the composition constraint by replacing the wording 

<<composedOf>> with <<dj-IN>> or <<qdj-IN>>. 

 

Example 
The following constraint says that the route of a natural hydrographical sub-network 

(HydroSubNetwork) must belong to a hydrographical network (HydroNetwork) and that all sub-

networks belonging to a network must be Disjoint or in a Touches relation (boundary-

boundary). 

HydroSubNetwork.route  dj-IN  HydroNetwork.develop 

this constraint operates on classes and spatial components which must be defined as follows: 
class HydroSubNetwork (...) class HydroNetwork (...) 

attributes  attributes 

class spatial components  class spatial components 

... - route: GU_CXCurve3D   ... - develop: GU_CXCurve3D 

 

Some of the variants already introduced for topological constraints can also be used for 

constraints of belonging, with the possibility to add selections and refer the constraint to the 

boundary, to the planar projection of the geometric value, to the geometry of segmented, events 

and subregions attributes or to link it to an association. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 55  di  85 

6.3.3 Partition constraint 

The partition constraint expresses the combination of a composition constraint with a constraint 

of belonging with disjunction (in the two version dj and qdj). 

The partition constraint is specified as follows: 

Syntax: 
  constraint Y.f partitioned X.g 

or 
  constraint Y.f q-partioned X.g 

 

with the following meaning: 

◦ The union of the geometric attributes g of objects from the class X which partition an object 

of the class Y composes the geometric attribute f of the object class Y (i.e. the constraint Y.f 

composedOf X.g applies); 

◦ The geometric attributes g of the objects of class X which form the partition of f do not 

overlap (they are adjacent at most), so the constraint X.g dj-IN Y.f  (or X.g qdj-IN Y.f ) 

applies. 

 

The graphic representation is taken form that of the composition constraint replacing the 

wording <<composedOf>> with <<partitioned>> or <<q-partitioned>>. 

 

Example 

Consider two classes representing Regions and Provinces linked by an Region-Province 

association, which is independent of the geometric representation of their territories. If we draw 

up this geometric representation in polygon form, we can see that there is a partition constraint 

between the polygon of a region and those of its provinces, which we can then define with the 

partitioned constraint as follows: 

constraint Region.extension  partitioned  Region.ProvinceOfTheRegion.extension 
 

this constraint operates on classes and spatial components which must be defined as follows: 
class Region (...) 

attributes 

class spatial components 

... - extension: GU_CPSurface2D; 

roles: ProvinceOfTheRegion [1..*]: Province 

  ... 

classe Province (...) 

attributes 

class spatial components 

   .... - extension: GU_CPSurface2D; 

 

This example shows the combination of the partition constraint with the reference to an 

association, applying the general rule that the variants introduced for the existential constraint 

can also be applied to composition constraints. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 56  di  85 

6.3.4 Composition constraints with multiple constraining classes 

There exists a variant of the composedOf, partitioned or q-partitioned constraints that allows 

them to refer to the union of values of the geometric attributes of different constraining classes. 

The different classes and their respective attributes must in this case be listed between 

parentheses, as show in the following example. 

 

Comment and Example 
Suppose that we need to define a “mixed route” made up of road elements and railway elements; 

the constraint that can express this property can be specified in GeoUML only by indicating as 

constraining classes both the class that represents road elements and that which represents 

railway elements, as in the following example: 

constraint MixedRoute.route  

composedOf (RouteElement.route, RailwayElement.route) 

 
this constraint operates on classes and spatial components which must be defined as follows: 

class RoadElement (…) 

attributes 

class spatial components 

... - route: GU_CPCurve2D 

class RailwayElement (…) 

attributes 

class spatial components 

... - route: GU_CPCurve2D 

class MixedRoute (…) 

attributes 

class spatial components 

... - route: GU_CPCurve2D 

 

The meaning of this specification is that a “mixed route” object possesses a geometric attribute 

made up of the union of curves belonging to the geometric attributes of road elements and 

railway elements. Its graphic form is shown in the following diagram, where the arrow from the 

constrained class is divided to point to all constraining classes. 

 

 

MixedRoute 

RailwayElement 
RoadElement 

V8 

<<composedOF>> 

route route 

route 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 57  di  85 

Appendix A – Translation of constraints in OCL 

A.1. Introduction 

This Annex gives formal definitions in OCL of all spatial integrity constraints presented in Chapter 

6.  

Each constraint is indeed a constraint template in OCL, which means that the OCL formula that 

defines the constraint semantics in OCL contains parameters. For each constraint template a short 

description is given, along with the template syntax and its definition in OCL.  

The templates applied to constraints used in a GeoUML schema produce the constraints formulation 

in OCL. These OCL formulas can be added to the application schema (AS) corresponding to the 

GeoUML schema in order to obtain a specification with total conformity with the rules set forth by 

standard ISO 19109 for the drafting of AS. 

A.2. Existential topological constraint 

A.2.1 Basic form 

Basic existential constraint 

Definition of symbols: 

Given two classes X and Y each containing at elast one geometric attribute, respectively g and f, 

the existential topological constraint from X to Y based on the disjunction of relations DJ_R = 

{rel1,...,reln} is defined as follows: 

Syntax: 
 constraint X.g (rel1 | … | reln) exists Y.f 

 

OCL template: 
ExistentialTopoConstraint (X, g, Y, f, DJ_R) ≡ 

context X 

inv: Y.allInstances -> 

  exists(a:Y | self.g.check(DJ_R, a.f)) 
 

If one or both geometric attributes f and g are of the type GU_C*SurfaceB3D, it is necessary to 

specify the component in question, namely the attribute B3D or the attribute surface; in the 

syntactic definition X.g (Y.f) must be replaced with X.g.B3D (Y.f.B3D) or with 

X.g.surface (Y.f.surface), while also replacing, where applicable, in the OCL template 

self.g with self.g.B3D (self.g.surface) and a.f with a.f.B3D 

(a.f.surface). 

 

A constraint can also be worked on the geometry of segmented, events or subregions attributes; 

in this case, the geometric attribute in the OCL template must be replaced with the call of one of 

the functions that return the segments, events or subregions according to the attribute type (for 

example, the function SegmentsOf_A() and SubregionsOf_A(), where A is the name of 

the segmented or subregions attribute). 

For segmented attributes, where the geometric attribute of one or both classes involved is of the 

type GU_C*SurfaceB3D, it is necessary to specify the function that returns the segments of the 

2D or 3D boundary of the surface component. 

The constraint is reformulated as follows for the segmented attributes (hereinafter reference is 

made to the segmented attribute, however each OCL template can be reformulated in an equal 

manner for attributes of segmented attributes on 2D/3D boundary, events and subregions 

attributes. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 58  di  85 

Variant on segmented attributes (segments/segments)  

Definition of symbols: 

Given two classes X and Y each containing at least one segmented attribute, named a and b, 

respectively, the existential topological constraint (segment/segment) from X to Y, based on the 

disjunction of relations DJ_R={rel1,...,reln} is defined as follows: 

Syntax: 
constraint X.SegmentsOf_a() (rel1|…|reln)  

           exists Y.SegmentsOf_b() 

 

OCL template: 
ExistentialTopoConstraintTR/TR (X, a, Y, b, DJ_R) ≡ 

 

context X 

inv: self.SegmentsOf_a() -> forall(t:GU_Object| 

          Y.allInstances.SegmentsOf_b() ->  

          exists(a:GU_Object | t.check(DJ_R, a))) 

 

 

Note that when the constraint refers to the geometry of a segmented attribute, the disjunction of 

topological relations must be satisfied by all segments returned by the function 

SegmentsOf_A(). Therefore, the result of the constraint evaluation also depends on the 

values returned by this function. 

The segments reference may also be found on the constrained class only or on the constraining 

class only. For completeness, these latter two variants are also shown below. 

 

Variant on segmented attributes (segments/geometries) 

Definition of symbols: 

Given two classes X and Y where X contains a segmented attribute (named a) and Y contains a 

geometric attribute f, the existential topological constraint from X to Y, variant 

segments/geometries, based on the disjunction of relations DJ_R={rel1,...,reln} is defined as 

follows: 

Syntax: 
  constraint X.SegmentsOf_a() (rel1 | … | reln) exists Y.f 

 

OCL template: 
ExistentialTopoConstraintTR/GEO  (X, a, Y, f, DJ_R) ≡ 

context X 

inv: self.SegmentsOf_a() -> forall(t:GU_Object| 

          Y.allInstances.f ->  

          exists(a:GU_Object | t.check(DJ_R, a))) 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 59  di  85 

Variant on segmented attributes (geometries/segments) 

Definition of symbols: 

Given two classes X and Y where X contains a geometric attribute g and Y contains a segmented 

attribute (named b), the existential topological constraint from X to Y, variant 

geometries/segments, based on the disjunction of relations DJ_R={rel1,...,reln} is defined as 

follows: 

Syntax: 
  constraint X.g (rel1 | … | reln) exists Y.SegmentsOf_b() 

 

OCL template: 
ExistentialTopoConstraintGEO/TR  (X, g, Y, b, DJ_R) ≡ 

context X 

inv: Y.allInstances.SegmentsOf_b() ->  

        exists(a:GU_Object | self.g.check(DJ_R, a))) 

 

 

A.2.2 Variant with selection 

An initial variant is used to select objects from the classes involved in the constraint. 

 

Variant with selection 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the existential topological constraint from X to Y, variant with selection, based on the 

disjunction of relations DJ_R={rel1,...,reln} is defined as follows: 

Syntax: 
  constraint (σ1(X))X.g (rel1 | … | reln) exists (σ2(X,Y))Y.f 

 

OCL template: 
  ExistentialTopoConstraint

SEL 
(X,σ1(X),g,Y,σ2(X,Y),f,DJ_R) ≡ 

context X 

inv: σ1(self) implies  

     (Y.allInstances -> exists(a:Y| σ2(self, a) and  

                             self.g.check(DJ_R, a.f))) 

 

 

The selection clause σ1(X) is a propositional formula of the type [not]( 1 opLogico … opLogico 

n) with opLogico {AND,OR} and i is an atomic formula of the type: (X.a op X.b), (X.a op 

cost), (X.a = null) o (X.a = not null) where both attributes belong to the class X and may be 

multi-value attributes, op {=,<>, <, >, , } and cost is a constant value other than null. In 

the first two formulae, in the presence of at least one multi-value operand (X.a or X.b), the 

formula is evaluated as follows: all possible combinations (Cartesian product) between operand 

values are generated and the atomic formula is evaluated as “true” where there exists at least one 

pair of values that satisfies the comparison condition; note that in the case of single-value 

attributes, this corresponds to generating a single pair of values to be compared. The last two 

formulae verify the existence or inexistence of the null value of the attribute. 

σ2(X,Y) is a propositional formula analogous to σ1(X) where i also accepts a formula of the join 

type (Y.a op X.b) provided that an attribute of the constrained class is always involved.  

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 60  di  85 

All attributes of constrained (constraining) classes are admitted in selection clauses, with the 

exception of other geometric attribute, geometric attributes of segmented (events, subregions) 

attributes and additional attributes of hierarchical enumerated domain; in case of DataType, the 

specific attribute of the DataType used in the selection clause must be specified. 

 

The presented selection formulae allow for two cases: 

1. normal selection: logical expressions of simple predicates of the type “value compactor 

attribute”; in this case are included: all possible version of σ1(X) and the versions of 

σ2(X,Y) where it contains only attributes of Y class. 

2. join selection: this form accepts predicates of the type “constrainedClass.attribute 

comparator attribute”; in this case are included: the versions of σ2(X,Y) where both 

attributes of X and of Y are compared. Such formulae allow to link each object of the 

constrained class to a subset of object of the constraining class to be used for constraint 

satisfaction. 

 

For selection on the constraining class σ2(X,Y), reference to the constraining class may be 

omitted, but not the reference to the constrained class; more specifically, the latter must be 

preceded by the symbol “$” in the event that a constraint involves a class both as a constrained 

class and as a constraining class (self-ring constraint). 

 

In addition to the selection clause applied to restrict objects involved in the constraint, it is also 

possible to express the selection condition to restrict any segments (events or subregions) that 

may be involved in a constraint by exploiting the condition of the functions 

SegmentsOf_A(selection_cond). When appearing in a constraint, these functions can 

be used to specify as a parameter an enriched selection clause, with respect to what required in 

their definition, which is then translated in the required syntax. 

 

The version of the template with selection extended to segmented attributes is presented below. 

In the template formulation we use the selection clauses σ1a(X, a)  and σ2b(X, Y, b) that have to 

be interpreted as follows: 

 σ1a(X, a) is a propositional formula of the same structure of σ1(X) i.e. [not]( 1 opLogico 

… opLogico n) with opLogico {AND,OR}, but where i is an atomic formula that 

always involves the segmented attribute X.a and is of the type: (X.a op cost), (X.a op 

X.b), (X.a = null) or (X.a = not null), where op {=, <>, <, >, , }, cost is a constant 

value other than null; when the attribute X.b is multi-value, the condition (X.a op X.b) is 

transformed to a disjunction of atomic formulae (X.a op val), where val corresponds in 

each formula to one of the values of the multi-value attribute X.b. 

 σ2b(X, Y, b) is a propositional formula analogous to σ1a(X, a) where i  also accepts the 

formula (Y.b op X.c) dove Y.b is the segmented attribute and X.c is an attribute of the 

constrained class.  

 

Regarding the attributes admitted both selection clauses use all class attributes with the 

exceptions described above for objects selection conditions. 

Shown below are the three versions of the constraint with selection in the cases: segments on 

segments, geometries on segments and segments on geometries. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 61  di  85 

Variant with selection and segmented attributes 
Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

and a segmented attribute, respectively a and b, the existential topological constraint from X to 

Y, variant with selection and segmented attributes, based on the disjunction of relations 

DJ_R={rel1,...,reln} is defined as follows: 

 

segments/segments 
Syntax: 
  constraint (σ1(X))X.SegmentsOf_a(σ1a(X,a)) 

             (rel1, …, reln) exists  

             (σ2(X,Y))Y.SegmentsOf_b(σ2b(X,Y,b)) 

 

OCL template: 
ExistentialTopoConstraintTR/TR

SEL
 

   (X, σ1(X), a, σ1a(X,a), Y, σ2(X,Y), b, σ2b(X,Y,b),DJ_R) ≡ 

 

context X 

inv: σ1(self) implies  

  self.SegmentsOf_a(“σ1a(X,a)”)-> 

    forall(t:GU_Object| 

       Y.allInstances-> 

       select(y:Y| σ2(self,y)).SegmentsOf_b(“σ2b(X,Y,b)”)-> 

       exists(a:GU_Object| t.check(DJ_R, a)) 

    ) 

 

geometries/segments 

Syntax: 
  constraint (σ1(X))X.g 

             (rel1, …, reln) exists  

             (σ2(X,Y))Y.SegmentsOf_b(σ2b(X,Y,b)) 

 

OCL template: 
ExistentialTopoConstraintGEO/TR

SEL
 

   (X, σ1(X), g, Y, σ2(X,Y), b, σ2b(X,b),DJ_R) ≡ 

 

context X 

inv: σ1(self) implies  

     Y.allInstances-> 

     select(y:Y| σ2(self,y)).SegmentsOf_b(“σ2(X,Y,b)”)-> 

     exists(a:GU_Object | self.g.check(DJ_R, a)) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 62  di  85 

segments/geometries 
Syntax: 
  constraint (σ1(X))X.SegmentsOf_a(σ1a(X,a))  

         (rel1, …, reln) exists  

             (σ2(X,Y))Y.f 

 

OCL template: 
ExistentialTopoConstraintTR/GEO

SEL
 

   (X, σ1(X), a, σ1a(X,a), Y, σ2(X,Y), f, DJ_R) ≡ 

 

context X 

inv: σ1(self) implies 

  self.SegmentsOf_a(“σ1(X,a)”)-> 

    forall(t:GU_Object| 

           Y.allInstances->exists(a:Y| σ1(self,a)) and 

                                  t.check(DJ_R, a)) 

    ) 

 

A.2.3 Variant on the boundary or planar projection 

 

Variant on boundary and planar projection 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the existential topological constraint from X to Y, variant on the boundary, based on the 

disjunction of relations DJ_R={rel1,...,reln} is defined as follows: 

 

Syntax: 
  constraint X.g.BND (rel1 | … | reln) exists Y.f 

 

OCL template: 
ExistentialTopoConstraint

B/- 
(X, g, Y, f, DJ_R) ≡ 

context X 

inv: Y.allInstances -> 

exists(a:Y | self.g.boundary().check(DJ_R, a.f) 

 

the existential topological constraint from X to Y, variant on the planar projection, based on the 

disjunction of relations DJ_R={rel1,...,reln} is also defined as follows: 

 

Syntax: 
  constraint X.g.PLN (rel1 | … | reln) exists Y.f 

 

OCL template: 
ExistentialTopoConstraint

P/-
 

 (X, g: GU_Object, Y, f: GU_Object, DJ_R) ≡ 

 

context X 

inv: Y.allInstances -> 

exists(a:Y | self.g.planar().check(DJ_R, a.f)) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 63  di  85 

Similarly the variants on boundary or on planar projection applied to the attribute f of the 

constraining class can be defined: 
ExistentialTopoConstraint

-/B
,  

ExistentialTopoConstraint
-/P
 

or the variants in which applies boundary on constrained class and planar projection on the 

constraining class or all other combinations: 
ExistentialTopoConstraint

B/B
,  

ExistentialTopoConstraint
P/P 

ExistentialTopoConstraint
B/P 

ExistentialTopoConstraint
P/B
 

As well as all variants obtained from the application of the two functions in cascade. 

 

It should be noted that the function planar() applied to a 2D geometry does not modify the 

geometry and that, when applied to an 3D object, it transforms it to an object in 2D space. 

This variant may be combined with others which accept selection, segmented attributes or a 

component of a surface with 3D boundary. 

A.2.4 Variant linked to an association 

This variant considers, in order to satisfy the constraint, only objects of the constraining class 

which are linked to the object to be verified through an association specified in the GeoUML 

schema. 

 

Variant linked to an association 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

and among these there exists an association, where the role of Y is r. The existential topological 

constraint from X to Y, variant linked to an association, based on the disjunction of relations 

DJ_R={rel1,...,reln} is defined as follows: 

 

Syntax: 
  constraint X.g (rel1 | … | reln) exists X.r.f 

 

OCL template: 
ExistentialTopoConstraint

A
(X, g, r, Y, f, DJ_R) ≡

 

 

context X 

inv: self.r -> exists(a:Y| self.g.check(DJ_R, a.f)) 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 64  di  85 

A.3 Union topological constraint 

A.3.1 Basic form 

Basic form 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the union topological constraint from X to Y based on the disjunction of relations 

DJ_R={rel1,...,reln} is defined as follows: 

 

Syntax: 
  constraint X.g (rel1 | … | reln)unione Y.f 

 

OCL template: 
UnionTopoConstraint (X, g, Y, f, DJ_R) ≡ 

 

context X 

inv: self.g.check(DJ_R, Y.allInstances -> 

          iterate(a:Y, acc: GU_Object =  |  

                       acc.gUnion(a.f))) 

 

A.3.2 Variant with selection 

For the union topological constraint there are also variants presented for the existential 

topological constraint, that is: version with selection, version referring to boundary and planar 

projection, and version linked to an association. 

 

Variant with selection 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the union topological constraint from X to Y, variant with selection, based on the disjunction of 

relations DJ_R={rel1,...,reln} is defined as follows: 

Syntax: 
  constraint (σ1(X))X.g (rel1 | … | reln) unione (σ2(X,Y))Y.f 

 

OCL template: 
UnionTopoConstraint

SEL
(X, σ1(X), g, Y, σ2(X,Y), f, DJ_R) ≡ 

 

context X 

inv: σ1(self) implies  

  self.g.check(DJ_R, 

    Y.allInstances->select(a:Y| σ2(self,a))-> 

    iterate(b:Y, acc: GU_Object =  |  

                 acc.gUnion(b.f))) 

 

 

The union constraint can also be applied to segmented attributes, considering the segmented 

attribute for the constrained class only, since for the constraining class this constraint requires 

the union of geometries, thus starting from segments does not change the geometry considered 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 65  di  85 

for the constraining object. Variants with selection are shown directly, while variants without 

selection are obtained by simply removing the selection condition. 

A.3.3 Variant with selection and segmented attributes 

 

Variant with selection and segmented attributes 

(segment/segment, geometries/segments, segments/geometries) 
Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

and each with one segmented attribute, respectively a and b, the union topological constraint 

from X to Y, variant with selection and segmented attributes, based on the disjunction of 

relations DJ_R={rel1,...,reln} is defined as follows: 

 

segments/geometries 

Syntax: 
 constraint (σ1(X))X.SegmentsOf_a(σ1(X,a))  

         (rel1 | … | reln) unione (σ2(X,Y))Y.f 

 

OCL template: 
UnionTopoConstraint

SEL
TR/GEO 

  (X, σ1(X), a, σ1(X,a), Y, σ2(X,Y), f, DJ_R) ≡ 

context X 

inv: σ1(self) implies 

  self.SegmentsOf_a(“σ1(X,a)”)-> forall(t:GU_Object| 

          t.check(DJ_R, 

                Y.allInstances-> select(a:Y|σ2(self,a)).f-> 

                iterate(b:GU_Object,  

                        acc: GU_Object =  |  

                        acc.gUnion(b)))) 

 

geometries/segments 

Syntax: 
 constraint (σ1(X))X.g (rel1 | … | reln) 

        unione (σ2(X,Y))Y.SegmentsOf_b(σ2b(X,Y,b)) 

 

OCL template: 
UnionTopoConstraint

SEL
GEO/TR 

  (X, σ1(X), g, Y, σ2(X,Y), b, σ2b(X,Y,b), DJ_R) ≡ 

context X 

inv: σ1(self) implies 

  self.g.check(DJ_R, Y.allInstances-> 

           select(a:Y| σ2(self,a)).SegmentsOf_b(“σ2(X,Y,b)”)-> 

               iterate(b:GU_Object,  

                       acc: GU_Object =  |  

                       acc.gUnion(b)))) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 66  di  85 

segments/segments 

Syntax: 
 constraint (σ1(X))X.SegmentsOf_a(σ1(X,a)) (rel1 | … | reln) 

          unione (σ2(X,Y))Y.SegmentsOf_b(σ2b(X,Y,b)) 

 

OCL template: 
UnionTopoConstraint

SEL
TR/TR 

  (X, σ1(X), a, σ1(X,a), Y, σ2(X,Y), b, σ2b(X,Y,b), DJ_R)≡ 

context X 

inv: σ1(self) implies 

  self.SegmentsOf_a(“σ1(X,a)”)-> forall(t:GU_Object| 

       t.check(DJ_R, Y.allInstances-> select(a:Y|  

            σ2(self,a)).SegmentsOf_b(“σ2b(X,Y,b)”)-> 

                iterate(b:GU_Object,  

                        acc: GU_Object =  | 

                        acc.gUnion(b)))) 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 67  di  85 

A.4. Universal topological constraint 

A.4.1 Basic form 

Basic form 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the universal topological constraint from X to Y based on the disjunction of relations 

DJ_R={rel1,...,reln} is defined as follows: 

 

Syntax: 
  constraint X.g (rel1 | … | reln) forEach Y.f 

 

OCL template: 
  UniversalTopoConstraint(X, g, Y, f, DJ_R) ≡ 

 

context X 

inv: Y.allInstances->forEach(a:Y| self.g.check(DJ_R, a.f)) 

 

A.4.2 Variant with selection 

 

Variant with selection 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the universal topological constraint from X to Y, variant with selection, based on the disjunction 

of relations DJ_R={rel1,...,reln} is defined as follows: 

 

Syntax: 
 constraint (σ1(X))X.g (rel1 | … | reln) forEach (σ2(X,Y))Y.f 

 

OCL template: 

 
  UniversalTopoConstraint

SEL
 

   (X, σ1(X), g, Y, σ2(X,Y), f, DJ_R) ≡ 

 

  context X 

  inv: σ1(self) implies 

          Y.allInstances -> select(a:Y| σ2(self,a)-> 

          forEach(b:Y| self.g.check(DJ_R, b.f)) 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 68  di  85 

A.4.3 Variant with selection and segmented attributes 

It is also possible to apply the universal constraint on segmented, events, or subregions attributes 

with the following semantics. 

 

Variant with selection and segmented attributes  

(segment/segment, geometries/segments, and segments/geometries) 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

the universal topological constraint from X to Y, variant with selection and segmented 

attributes, based on the disjunction of relations DJ_R={rel1,...,reln} is defined as follows: 

 

segments/segments 

 

Syntax: 
  constraint (σ1(X))X.aTratti_a(σ1a(X,a)) 

       (rel1 | … | reln) forEach 

       (σ2(X,Y))Y.aTratti_b(σ2b(X,Y,b)) 

 

OCL template: 
  UniversalTopoConstraint

SEL
TR/TR 

      (X, σ1(X), a, σ1a(X,a), Y, σ2(X,Y), b, σ2b(X,Y,b), DJ_R) ≡ 

  context X 

  inv: σ1(self) implies 

  self.SegmentsOf_a(“σ1a(X,a)”)-> 

       forall(t:GU_Object |  

         Y.allInstances-> 

             select(y:Y| σ2(self,Y)).SegmentsOf_b(“σ2b(X,Y,b)”)-> 

         forEach(c:GU_object| t.check(DJ_R, c)) 

       ) 

 

geometries/segments 

 

Syntax: 
  constraint (σ1(X))X.g  

           (rel1 | … | reln) forEach 

             (σ2(X,Y))Y.aTratti_b(σ2b(X,Y,b)) 

 

OCL template: 
  UniversalTopoConstraint

SEL
GEO/TR 

  (X, σ1(X), g, Y, σ2(X,Y), b, σ2b(X,Y,b), DJ_R) ≡ 

  context X 

  inv: σ1(self) implies 

          Y.allInstances-> 

             select(y:Y| σ2(self,Y)).SegmentsOf_b(“σ2b(X,Y,b)”)-> 

          forEach(c:GU_object | self.g.check(DJ_R, c)) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 69  di  85 

segments/geometries 

Syntax: 
  constraint (σ1(X))X.aTratti_a(σ1a(X,a)) 

         (rel1 | … | reln) forEach 

         (σ2(X,Y))Y.f 

 

OCL template: 
  UniversalTopoConstraint

SEL
TR/GEO 

  (X, σ1(X), a, σ1a(a,X), Y, σ2(X,Y), f, DJ_R) ≡ 

  context X 

  inv: σ1(self) implies 

     self.SegmentsOf_a(“σ1a(X,a)”) -> 

       forall(t:GU_Object |  

         Y.allInstances->select(b:Y| σ2(self,b))-> 

           forEach(c:Y | t.check(DJ_R, c.f)) 

       ) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 70  di  85 

A.5. Composition constraint 

A.5.1 Basic form 

Basic form 

Definition of symbols: 

Given a class Y with a geometric attribute f and a class X with a geometric attribute g, the 

composition constraint from Y to X is defined as follows: 

Syntax: 
 constraint Y.f compostoDa X.g 

 

OCL template: 
 ComposedOfConstraint(Y, f, X, g) ≡ 

 

context Y 

inv: self.f.Equals(X.allInstances.g -> 

          select(a:GU_Object| self.f.Contains(a) or      

                              self.f.Equals(a) ) -> 

          iterate(b:GU_Object, acc: GU_Object =  |  

                               acc.gUnion(b)) 

 

 

If one or both geometric attributes f and g are of type GU_C*SurfaceB3D it is necessary to 

specify the component in question, namely the attribute B3D or surface; accordingly, in the 

syntactic definition of the constraint in the case of both attributes, X.g must be replaced with 

X.g.B3D (surface) and Y.f with Y.f.B3D (surface) while also replacing, where 

applicable, in the OCL template, self.f with self.f.B3D (surface), 

X.AllInstances.g with X.AllInstances.g.B3D (surface) and 

self.f.Contains(a) with self.f.B3D(surface).Contains(a). 

A.5.2 Variant with selection 

Shown below is the definition of the composition constraint with selection illustrating how the 

other constraints are altered in the presence of selection. 

 

Variant with selection 

Definition of symbols: 

Given a class Y with a geometric attribute f and a class X with a geometric attribute g, the 

composition constraint from Y to X, variant with selection, is defined as follows: 

Syntax: 
  constraint (σ1(Y))Y.f compostoDa (σ2(Y,X))X.g 

 

OCL template: 
 ComposedOfConstraint

SEL
(Y, σ1(Y), f, X, σ2(Y,X), g) ≡ 

  context Y 

  inv: σ1(self) implies (self.f.Equals( 

          X.allInstances->select(x:X| σ2(self,x)).g-> 

          select(a:GU_Object| self.f.Contains(a)  

                              or self.f.Equals(a))-> 

          iterate(b:GU_Object, acc: GU_Object =  |  

                  acc.gUnion(b))) 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 71  di  85 

A.5.3 Variant with selection and segmented attributes 

The constraint is reformulated as follows for segmented attributes: 

 

Variant with selection and segmented attribute  

(segments/segments, geometries/segments and segments/geometries) 

Definition of symbols: 

Given a class Y with a geometric attribute f and a segmented attribute b, and a class X with a 

geometric attribute g and a segmented attribute a, the composition constraint from Y to X, 

variant with selection and segmented attributes, is defined as follows: 

 

segments/segments  
Syntax: 
 constraint (σ1(Y))Y.SegmentsOf_b(σ1b(Y,b)) compostoDa  

         (σ2(Y,X))X.SegmentsOf_a(σ2a(Y,X,a)) 

 

OCL template: 
 ComposedOfConstraint

SEL
TR/TR(Y, σ1(Y), b, σ1b(Y,b),  

   X, σ2(Y,X), a, σ2a(Y,X,a)) ≡ 

 

  context Y 

  inv: σ1(self) implies 

     self.SegmentsOf_b(“σ1b(Y,b)”)-> 

      forall(t: GU_Object| t.Equals( 

       X.allInstances-> 

       select(x:X| σ2(self,x)).SegmentsOf_a(“σ2a(Y,X,a)”)-> 

       select(c:GU_Object| t.Contains(c)or t.Equals(c))-> 

              iterate(d:GU_Object, acc: GU_Object =  |  

                              acc.gUnion(d)) 

             ) 

 

geometries/segments 

Syntax: 
  constraint (σ1(Y))Y.f compostoDa  

      (σ2(Y,X))X.SegmentsOf_a(σ2a(Y,X,a)) 

 

OCL template: 
 ComposedOfConstraint

SEL
GEO/TR(Y, σ1(Y), f, X, σ2(Y,X),  

   a, σ2a(Y,X,a)) ≡ 

  context Y 

  inv: σ1(self) implies 

     self.f.Equals( 

      X.allInstances-> 

        select(x:X| σ2(self,x)).SegmentsOf_a(“σ2a(Y,X,a)”)-> 

           select(c:GU_Object| self.f.Contains(c)  

                               or self.f.Equals(c))-> 

             iterate(d:GU_Object, acc: GU_Object =  |  

                                  acc.gUnion(d)) 

                  ) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 72  di  85 

segments/geometries 

Syntax: 
 constraint (σ1(Y))Y.SegmentsOf_b(σ1b(Y,b)) compostoDa  

         (σ2(Y,X))X.g 

 

OCL template: 
 ComposedOfConstraint

SEL
TR/GEO(Y, σ1(Y), b, σ1b(Y,b), 

   X, σ2(Y,X), g) ≡ 

  context Y 

  inv: σ1(self) implies 

     self.SegmentsOf_b(“σ1b(Y,b)”)-> 

       forall(t: GU_Object| t.Equals( 

         X.allInstances -> 

           select(c:X| σ2(self,c)  

               and (t.Contains(c.g)or t.Equals(c.g)).g)-> 

            iterate(d:GU_Object, acc: GU_Object =  |  

                                 acc.gUnion(d))) 

       ) 

 

A.5.4 Variant on boundary and planar projection 

Below is the formal definition fo the composition constraints on boundary and planar projection. 

 

Variant on boundary 

Definition of symbols: 

Given a class Y with a geometric attribute f and a class X with a geometric attribute g, the 

composition constraint from Y to X, variant on boundary, is defined as follows: 

 

Syntax: 
  constraint Y.f.BND compostoDa X.g 

 

OCL template: 
  ComposedOfConstraint

B-
(Y, f, X, g) ≡ 

 

context Y 

inv: self.f.boundary().Equals( 

 X.allInstances.g-> 

    select(a:GU_Object| self.f.boundary().Contains(a)  

                        or self.f.boundary().Equals(a))-> 

   iterate(b:GU_Object, acc: GU_Object =  |  

                        acc.gUnion(b))) 

 

Similarly the variants on planar projection applied to the attribute f of Y can be defined: 
ComposedOfConstraint

P/-
 

 

or the variants in which applies boundary on constrained class and planar projection on the 

constraining class or all other combinations: 
ComposedOfConstraint

-/B
,  

ComposedOfConstraint
-/P
 

ComposedOfConstraint
B/B
,  



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 73  di  85 

ComposedOfConstraint
P/P 

ComposedOfConstraint
B/P 

ComposedOfConstraint
P/B
 

As well as all variants obtained from the application of the two functions in cascade. 

A.5.5 Variant linked to an association 

Finally, the formal definition is given for the composition constraint based on associations, in 

which composition constraint must not refer to two independent class and to the property of 

geometric containment, but must be based on an association that connects them. 

This means that the objects of the constraining class that must participate in the constraint are 

those which participate in the association. This variant of the composition constraint is defined 

below: 

 

Variant linked to an association 

Definition of symbols: 

Given a class Y with a geometric attribute f and a role r towards a class X with a geometric 

attribute g, the composition constraint from Y to X, variant linked to association, is defined as 

follows: 

Syntax: 
  constraint Y.f compostoDa Y.r.g 

 

OCL template: 
  ComposedOfOnAssociation(Y, f, r, g) ≡ 

 

  context Y 

  inv: self.f.Equals(self.r.g -> 

     iterate(b:GU_Object,acc: GU_Object =  | 

              acc.gUnion(b))) 

 

 

As we can see, the only difference with respect to the constraint not linked to an association is 

the fact that, instead of being based on all objects of X (X.allInstances), it is based solely 

on instances attainable through the role r of the association (self.r). 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 74  di  85 

A.6. Constraint of belonging 

A.6.1 Basic form 

 

Constraint of belonging with disjunction 

Definition of symbols: 

Given a class X with a geometric attribute g and a class Y with a geometric attribute f, the 

constraint of belonging with disjunction from X to Y is defined as follows: 

Syntax: 
  constraint X.g dj-IN Y.f 

 

OCL template: 
  dj-IN(X, g, Y, f) ≡ 

 

context X 

inv: Y.allInstances.f->  

      exists(a:GU_Object|self.g.In(a)  

                         or self.g.Equals(a)) 

     and  

     X.allInstances -> 

     select(x | (x.OID  self.OID)).g-> 

     forall(v: GU_Object |brotherIN(v, self.g, Y, f)  

        implies  

       (v.Disjoint(self.g) or  

               v.Touch(self.g) and v.Touch(self.g.boundary()))) 

 

 

 brotherIN(x1, x2, Y, f)  

   ≡ Y.allInstances ->  

      exists(y:Y| ((x1.In(y.f)) or (x1.Equals(y.f)) 

                   and  

                   ((x2.In(y.f) or (x2.Equals(y.f)) 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 75  di  85 

Constraint of belonging with quasi-disjunction 

Definition of symbols: 

Given a class X with a geometric attribute g and a class Y with a geometric attribute f, the 

constraint of belonging with quasi-disjunction from X to Y is defined as follows: 

Syntax: 
  constraint X.g qdj-IN Y.f 
 

OCL template: 
  qdj-IN (X, g, Y, f) ≡ 
 

context X 

inv:Y.allInstances.f-> 

   exists(a: GU_Object| self.g.In(a) or  

                        self.g.Equals(a)) 

    and  

    X.allInstances -> 

    select(x | (x.OID  self.OID).g-> 

    forall(v: GU_Object | brotherIN(v, self.g, Y, f)  

       implies 

      (v.Disjoint(self.g) or  

       v.Touch(self.g) or 

       v.Cross(self.g))) 
 

where brotherIN() is the function defined in the basic form. 

Some of the variants already introduced for topological constraints can also be used for 

constraints of belonging. 

A.6.2 Variant with selection 

Variant with selection 

Definition of symbols: 

Given a class X with a geometric attribute g and a class Y with a geometric attribute f, the 

constraint of belonging with disjunction from X to Y, variant with selection, is defined as 

follows: 

Syntax: 
  constraint (σ1(X))X.g dj-IN (σ2(X,Y))Y.f 
 

OCL template: 
  dj-IN(X, σ1(X), g, Y, σ2(X,Y), f) ≡ 
 

context X 

inv: σ1(self) implies ( 

(Y.allInstances-> select(y:Y| σ2(self,y)).f-> 

    exists(a:GU_Object| self.g.In(a) or  

                           self.g.Equals(a)))  

     and 

(X.allInstances->  

  select(x:X| σ1(x) and (x.OID  self.OID)).g -> 

   forall(v: GU_Object | brotherIN(v, self.g, Y, f) 

    implies  

        (v.Disjoint(self.g) or  

            v.Touch(self.g) and v.Touch(self.g.boundary()))) 

where brotherIN() is the function defined in the basic form. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 76  di  85 

This variant is trivially propagated also to the qdj-IN constraint. 

A.6.3 Variant with selection and segmented attributes 

 

Variant with selection and segmented attributes  

(segments/segments, geometries/segments and segments/geometries) 

Definition of symbols: 

Given two classes X and Y each containing at least one geometric attribute, respectively g and f, 

and each with one segmented attribute, respectively a and b, the constraint of belonging with 

disjunction from X to Y, variant with selection and segmented attributes, based on the 

disjunction of relations DJ_R={rel1,...,reln} is defined as follows: 

 

segments/segments 

Syntax: 
  constraint σ1(X)X.SegmentsOf_a(σ1a(X,a)) dj-IN  

          σ2(X,Y)Y.SegmentsOf_b(σ2b(X,Y,b)) 

 

OCL template: 
  dj-INTR/TR

SEL
(X, σ1(X), a, σ1a(X,a), Y, σ2(X,Y),  

   b, σ2b(X,Y,b)) ≡ 

 

context X 

inv: σ1(self) implies 

(self.SegmentsOf_a(“σ1a(X,a)”)-> 

  forall(t: GU_Object|  

   Y.allInstances-> 

   select(y:Y| σ2(self,y)).SegmentsOf_b(“σ2b(X,Y,b)”)-> 

        exists(a:GU_Object| t.In(a) or t.Equals(a))  

        and 

        X.allInstances-> 

         select(x:X| σ1(x)).SegmentsOf_a(“σ1a(X,a)”)-> 

      select (v: GU_Object | not (v.sameObj(t))   

           or (v.sameObj(t)) and  

               v.sameValueSeg(t))-> 

         forall(c: GU_Object| 

        brotherIN(c, t, Y, f)  

                implies  

        (c.Disjoint(t) or  

                c.Touch(t)and c.Touch(t.boundary())))) 

 

Where the function brotherIN()is the one defined in the basic form; sameObj() verifies 

whether the segments compared belong to the same object and finally sameValueSeg() 

verifies whether the two segments are associated with the same segmented attribute value. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 77  di  85 

geometries/segments 

Syntax: 
  constraint (σ1(X))X.g dj-IN 

      (σ2(X,Y))Y.SegmentsOf_b(σ2b(X,Y,b)) 

 

OCL template: 
  dj-INGEO/TR

SEL
(X, σ1(X), g, Y, σ2(X,Y), b, σ2b(X,Y,b)) ≡ 

 

context X 

inv: σ1(self) implies ( 

Y.allInstances-> 

  select(y:Y| σ2(self,y)).SegmentsOf_b(“σ2b(X,Y,b)”)-> 

      exists(a:GU_Object| self.In(a) or  

                             self.Equals(a))  

     and 

  X.allInstances-> 

      select(x:X| σ1(x) and x.OID  self.OID)).g-> 

    forall(c: GU_Object| brotherIN(c, self.g, Y, f)  

        implies  

      (c.Disjoint(self.g) or  

          c.Touch(self.g) and c.Touch(self.g.boundary()))) 

 

segments/geometries 

Syntax: 
  constraint (σ1(X))X.SegmentsOf_a(σ1a(X,a)) dj-IN 

      (σ2(X,Y))Y.f  

 

OCL template: 
  dj-INTR/GEO

SEL
(X, σ1(X), a, σ1a(X,a), Y, σ2(X,Y), f) ≡ 

 

context X 

inv: σ1(self) implies  

(self.SegmentsOf_a(“σ1a(X,a)”)-> 

  forall(t: GU_Object | 

    Y.allInstances->select(y:Y| σ2(self,y)).f-> 

        exists(a:GU_Object| t.In(a) or t.Equals(a))  

         and 

      X.allInstances-> 

       select(x:X| σ1(x)).SegmentsOf_a(“σ1a(X,a)”)-> 

    select (v: GU_Object | not (v.sameObj(t))   

                 or (v.sameObj(t) and  

                     v.sameValueTratto(t))-> 

              forall(c: GU_Object| 

            brotherIN(c, t, Y, f)  

                implies  

             (c.Disjoint(t) or  

                 c.Touch(t) and c.Touch(t.boundary()))) 

Where the function brotherIN()is the one defined in the basic form; sameObj() verifies 

whether the segments compared belong to the same object and finally sameValueSeg() 

verifies whether the two segments are associated with the same segmented attribute value. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 78  di  85 

A.6.4 Variant on boundary and planar projection 

 

Constraint of belonging on boundary and planar projection 

Definition of symbols: 

Given a class X with a geometric attribute g and a class Y with a geometric attribute f, the 

constraint of belonging with disjunction from X to Y, variant on boundary or planar projection, 

is defined as follows: 

Syntax: 
  constraint X.g.BND dj-IN Y.f 

 

OCL template: 
  dj-IN

B-
(X, g, Y, f) ≡ 

 

context X 

inv: Y.allInstances.f-> 

  exists(a:GU_Object| self.g.boundary().In(a)  

                   or self.g.boundary().Equals(a))) 

  and X.allInstances-> 

       select (x | (x.OID  self.OID)).g.boundary-> 

        forall(c: GU_Object| 

            brotherIN(c, self.g.boundary(), Y, f)  

            implies  

      (c.Disjoint(self.g.boundary()) or  

       c.Touch(self.g.boundary()))) 

 

Syntax: 
  constraint X.g dj-IN Y.f.PLN 

 

OCL template: 
  dj-IN

-P
(X, g, Y, f) ≡ 

 

context X 

inv: Y.allInstances.f.planar()-> 

  exists(a:GU_Object| self.g.In(a) or  

                      self.g.Equals(a))) 

  and  

  X.allInstances.g-> 

   select(x:X| x.OID  self.OID).g -> 

    forall(v: GU_Object | brotherIN(v, self.g, Y, f) 

    implies  

        (v.Disjoint(self.g) or  

            v.Touch(self.g)and v.Touch(self.g.boundary()))) 

 

Where the function brotherIN()is the one defined in the basic form. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 79  di  85 

A.7. Partition constraint 

The partition constraint is obtained by combining a composition constraint with a constraint of 

belonging with disjunction or quasi-disjunction, as defined below. 

 

Partition constraint 

Definition of symbols: 

Given a class Y with a geometric attribute f and a class X with a geometric attribute g, the 

partitioned constraint from Y to X is defined as follows: 

Syntax: 
  constraint Y.f partitioned X.g 

 

OCL template: 
 

  partitioned(Y, f, X, g) ≡  

    dj-IN(X, g, Y, f) 

       and  

    ComposedOfConstraint(Y, f, X, g) 

 

 

Quasi-partition constraint 

Definition of symbols: 

Given a class Y with a geometric attribute f and a class X with a geometric attribute g, the 

quasi-partitioned constraint from Y to X is defined as follows: 

 

Syntax: 
  constraint Y.f q-partitioned X.g 

 

OCL template: 
 

  q-partitioned(X, g, Y, f) ≡ 

    qdj-IN(X, g, Y, f) 

    and  

    ComposedOfConstraint(Y, f, X, g) 

 

 

Some of the variants already introduced for topological constraints can also be used for partition 

constraints, with the possibility to add selections and refer the constraint to the boundary or to 

the planar projection of the geometric value. Finally, the constraint can also be referred to the 

geometry of segmented, events or subregions attributes or link it to an association. 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 80  di  85 

A.8. Composition constraints with multiple constraining classes 

In order to formally define the semantics of this type of constraint, it is necessary to specify new 

OCL templates as follows (the union function refers here to the union of objects of different 

geometric types, while gUnion refers to the union of point sets form geometries of geometric 

objects). 

A.8.1 Basic form 

 

Basic form 

Definition of symbols: 

Given a class Y with a geometric attribute f and a set of classes X1, …, Xn with a geometric 

attribute g1, …, gn, the composition constraint from Y to X1, …, Xn  is defined as follows: 

Syntax: 
  constraint Y.f compostoDa (X1.g1, …, Xn.gn) 

 

OCL template: 
  ComposedOfConstraint

MULTI
(Y, f, X1, g1, …, Xn, gn) ≡ 

 

context Y 

inv: self.f.Equals 

     ( X1.allInstances.g1 -> 

               union(X2.allInstances.g2 ->  

               … 

              union(Xn.allInstances.gn)…) -> 

   select(a:GU_Object| self.f.Contains(a) 

                          or self.f.Equals(a)) -> 

    iterate(b:GU_Object, acc: GU_Object =  |  

                         acc.gUnion(b)) 

  ) 

 

 

Also for these constraints, the syntactic definition and the OCL constraint template are modified  

where the geometric attributes f, g1, …, gn, are of type GU_C*SurfaceB3D following the 

approach described in similar previous cases. 

 

Variants linked to an association and all other combinations are obtainable through the natural 

combination of the OCL expressions presented. 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 81  di  85 

A.8.2 Variant with selection 

 

Variant with selection 

Definition of symbols: 

Given a class Y with a geometric attribute f and a set of classes X1, …, Xn with a geometric 

attribute g1, …, gn, the composition constraint from Y to X1, …, Xn , variant with selection, is 

defined as follows: 

Syntax: 
  constraint (σ1(Y))Y.f compostoDa  

    ((σ2,1(Y,X1))X1.g1, …, (σ2,n(y,Xn))Xn.gn) 

OCL template: 
  ComposedOfConstraintMulti

SEL
(Y, f, X1, g1, …, Xn, gn) ≡ 

context Y 

inv: σ0(self) implies 

  self.f.Equals( 

    X1.allInstances->select(x1:X1| σ2,1(Y,X1)).g1 -> 

    union(X2.allInstances->select(x2:X2|  

                           σ2,2(Y,X2)).g2 ->  

   … 

    union(Xn.allInstances->select(xn:Xn|  

                           σ2,n(Y,XN)).gn))->  

  select(a:GU_Object|  

                    self.f.boundary().Contains(a) 

                 or self.f.boundary().Equals(a))-> 

     iterate(b:GU_Object, acc: GU_Object =  |  

          acc.gUnion(b))) 

 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 82  di  85 

A.8.3 Variant with selection and segmented attributes 

 

Variant with selection and segmented attributes 

(segments/segments, geometries/segments and segments/geometries) 

Definition of symbols: 

Given a class Y with a geometric attribute f and a segmented attribute, named a, and a set of 

classes X1, …, Xn each with a geometric attribute g1, …, gn, and a segmented attribute, named bi, 

the composition constraint from Y to X1, …, Xn , variant with selection and segmented attributes, 

is defined as follows: 
 

segments/segments 
Syntax: 
  constraint (σ1(Y))Y.SegmentsOf_a(σ1a(Y,a)) compostoDa  

      ((σ2,1(Y,X1))X1.SegmentsOf_b1(σ2b,1(Y,X1,b1)), …,  

       (σ2,n(Y,Xn))Xn.SegmentsOf_bn(σ2b,n(Y,Xn,bn)) 

OCL template: 
  ComposedOfConstraintMulti

SEL
TR/TR(Y, σ1(Y), a, σ1a(Y,a), 

   X1, σ2,1(Y,X1), b1, σ2b,1(Y,X1,b1), …, 

   Xn, σ2,n(Y,Xn), bn, σ2b,n(Y,Xn,bn)) ≡ 

 

  context Y 

  inv: σ1(self) implies 

  self.SegmentsOf_a(“σ1a(Y,a)”)-> 

  forall(t:GU_Object| t.Equals( 

   X1.allInstances-> 

   select(x1:X1|σ2,1(self,x1)). 

    SegmentsOf_b1(“σ2b,1(Y,X1,b1)”)-> 

 union(…)-> 

 … 

 union(Xn.allInstances-> 

 select(xn:Xn|σ2,n(self,xn)). 

    SegmentsOf_bn(“σ2b,n(Y,Xn,bn)”))-> 

  select(a:GU_Object|t.Contains(a)or t.Equals(a) )-> 

  iterate(b:GU_Object, acc: GU_Object =  |  

                       acc.gUnion(b))) 

) 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 83  di  85 

geometries/segments 
Syntax: 
  constraint (σ1(Y))Y.f compostoDa  

      ((σ2,1(Y,X1))X1.SegmentsOf_b1(σ2b,1(Y, X1,b1)), …,  

       (σ2,n(Y,Xn))Xn.SegmentsOf_bn(σ2b,n(Y, Xn,bn)) 

 
OCL template: 
  ComposedOfConstraintMulti

SEL
TR/TR(Y, σ1(Y), f, 

   X1, σ2,1(Y,X1), b1, σ2b,1(Y,X1,b1), …, 

   Xn, σ2,n(Y,Xn), bn, σ2b,n(Y,Xn,bn)) ≡ 

 

  context Y 

  inv: σ1(self) implies 

  self.f.Equals( 

   X1.allInstances-> 

   select(x1:X1|σ2,1(self,X1)). 

                        SegmentsOf_b1(“σ2b,1(Y,X1,b1)”)-> 

 union(…)-> 

 … 

 union(Xn.allInstances-> 

 select(xn:Xn|σ2,n(self,xn)). 

                      SegmentsOf_bn(“σ2b,n(Y,X1,bn)”))-> 

 select(a:GU_Object| self.f.Contains(a) 

                     or self.f.Equals(a))-> 

 iterate(b:GU_Object, acc: GU_Object =  |  

                      acc.gUnion(b)) 

) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 84  di  85 

segments/geometries 
Syntax: 
  constraint (σ1(Y))Y.SegmentsOf_a(σ1a(Y,a)) compostoDa  

      ((σ2,1(Y,X1))X1.g1, …, (σ2,n(Y,Xn))Xn.gn 

 
OCL template: 
  ComposedOfConstraintMulti

SEL
TR/TR(Y, σ1(Y), a, σ1a(Y,a), 

   X1, σ2,1(Y,X1), g1, …, Xn, σ2,n(Y,Xn), gn) ≡ 

 

  context Y 

  inv: σ1(self) implies 

  self.SegmentsOf_a(“σ1a(Y,a)”)-> 

    forall(t:GU_Object| t.Equals( 

     X1.allInstances->select(x1:X1|σ2,1(self,x1)).g1-> 

   union(…)-> 

   … 

  union(Xn.allInstances->  

                   select(xn:Xn|σ2,n(self,xn)).gn)-> 

  select(a:GU_Object| t.Contains(a)or t.Equals(a))-> 

     iterate(b:GU_Object, acc: GU_Object =  |  

                           acc.gUnion(b))) 

  ) 

 



GeoUML Model 
Geometric Model and OCL Constraints Templates 

 

pag. 85  di  85 

A.8.4 Variant on boundary and planar projection 

 

Variant on boundary and planar projection 

Definition of symbols: 

Given a class Y with a geometric attribute f and a set of classes X1, …, Xn with a geometric 

attribute g1, …, gn, the composition constraint from Y to X1, …, Xn , variant on boundary or on 

planar projection, is defined as follows: 

Syntax: 
  constraint Y.f.BND compostoDa (X1.g1, …, Xn.gn) 

 

OCL template: 
  ComposedOfConstraintMulti

B-
(Y, f, X1, g1, …, Xn, gn) ≡ 

context Y 

inv: self.f.boundary().Equals(X1.allInstances.g1-> 

       union(X2.allInstances.g2)-> 

       … 

       union(Xn.allInstances.gn)-> 

  select(a:GU_Object|  

            self.f.boundary().Contains(a) or  

            self.f.boundary().Equals(a))-> 

             iterate(b:GU_Object, acc: GU_Object= | 

                     acc.gUnion(b)) 

  ) 

 

Syntax: 
  constraint Y.f compostoDa (X1.g1.PLN, …, Xn.gn.PLN) 

 

OCL template: 
  ComposedOfConstraintMulti

-P
(Y, f, X1, g1, …, Xn, gn) ≡ 

context Y 

inv: self.f.Equals(X1.allInstances.g1.planar()-> 

       union(X2.allInstances.g2.planar())->  

       … 

       union(Xn.allInstances.gn.planar())-> 

  select(a:GU_Object| self.f.Contains(a)  

                         or self.f.Equals(a))-> 

  iterate(b:GU_Object, acc: GU_Object =  |  

          acc.gUnion(b)) 

 


